1
|
Wang B, Wang W, Xu Y, Liu R, Li R, Yang P, Zhao C, Dai Z, Wang Y. Manipulating Redox Homeostasis of Cancer Stem Cells Overcome Chemotherapeutic Resistance through Photoactivatable Biomimetic Nanodiscs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308539. [PMID: 38326103 DOI: 10.1002/smll.202308539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Tumor heterogeneity remains a significant obstacle in cancer therapy due to diverse cells with varying treatment responses. Cancer stem-like cells (CSCs) contribute significantly to intratumor heterogeneity, characterized by high tumorigenicity and chemoresistance. CSCs reside in the depth of the tumor, possessing low reactive oxygen species (ROS) levels and robust antioxidant defense systems to maintain self-renewal and stemness. A nanotherapeutic strategy is developed using tumor-penetrating peptide iRGD-modified high-density lipoprotein (HDL)-mimetic nanodiscs (IPCND) that ingeniously loaded with pyropheophorbide-a (Ppa), bis (2-hydroxyethyl) disulfide (S-S), and camptothecin (CPT) by synthesizing two amphiphilic drug-conjugated sphingomyelin derivatives. Photoactivatable Ppa can generate massive ROS which as intracellular signaling molecules effectively shut down self-renewal and trigger differentiation of the CSCs, while S-S is utilized to deplete GSH and sustainably imbalance redox homeostasis by reducing ROS clearance. Simultaneously, the depletion of GSH is accompanied by the release of CPT, which leads to subsequent cell death. This dual strategy successfully disturbed the redox equilibrium of CSCs, prompting their differentiation and boosting the ability of CPT to kill CSCs upon laser irradiation. Additionally, it demonstrated a synergistic anti-cancer effect by concurrently eliminating therapeutically resistant CSCs and bulk tumor cells, effectively suppressing tumor growth in CSC-enriched heterogeneous colon tumor mouse models.
Collapse
Affiliation(s)
- Bo Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wuwan Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenyang Zhao
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical, Imaging Center, Peking University, Beijing, 100871, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
2
|
Pérez-Martínez Z, Boga JA, Potes Y, Melón S, Coto-Montes A. Effect of Melatonin on Herpesvirus Type 1 Replication. Int J Mol Sci 2024; 25:4037. [PMID: 38612846 PMCID: PMC11012353 DOI: 10.3390/ijms25074037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Acute HSV-1 infection is associated with mild symptoms, such as fever and lesions of the mouth, face and skin. This phase is followed by a latency period before reactivation, which is associated with symptoms ranging from ulcers to encephalitis. Despite available anti-HSV-1 drugs, the development of new antiviral agents is sought due to the presence of resistant viruses. Melatonin, a molecule secreted by the pineal gland, has been shown to be an antioxidant, inducer of antioxidant enzymes, and regulator of various biological processes. Clinical trials have explored its therapeutic utility in conditions including infections. This study focuses on melatonin's role in HSV-1 replication and the underlying mechanisms. Melatonin was found to decrease the synthesis of HSV-1 proteins in infected Vero cells measured by immunofluorescence, indicating an inhibition of HSV-1 replication. Additionally, it regulates the activities of antioxidant enzymes and affects proteasome activity. Melatonin activates the unfolded protein response (UPR) and autophagy and suppresses apoptosis in HSV-1-infected cells. In summary, melatonin demonstrates an inhibitory role in HSV-1 replication by modulating various cellular responses, suggesting its potential utility in the treatment of viral infections.
Collapse
Affiliation(s)
- Zulema Pérez-Martínez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Jose Antonio Boga
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Santiago Melón
- Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Z.P.-M.); (J.A.B.); (S.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
3
|
Yang X, Zhou W, Zhou J, Li A, Zhang C, Fang Z, Wang C, Liu S, Hao A, Zhang M. Pcgf5: An important regulatory factor in early embryonic neural induction. Heliyon 2024; 10:e27634. [PMID: 38533065 PMCID: PMC10963245 DOI: 10.1016/j.heliyon.2024.e27634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Polycomb group RING finger (PCGF) proteins, a crucial subunits of the Polycomb complex, plays an important role in regulating gene expression, embryonic development, and cell fate determination. In our research, we investigated Pcgf5, one of the six PCGF homologs, and its impact on the differentiation of P19 cells into neural stem cells. Our findings revealed that knockdown of Pcgf5 resulted in a significant decrease in the expression levels of the neuronal markers Sox2, Zfp521, and Pax6, while the expression levels of the pluripotent markers Oct4 and Nanog increased. Conversely, Pcgf5 overexpression upregulated the expression of Sox2 and Pax6, while downregulating the expression of Oct4 and Nanog. Additionally, our analysis revealed that Pcgf5 suppresses Wnt3 expression via the activation of Notch1/Hes1, and ultimately governs the differentiation fate of neural stem cells. To further validate our findings, we conducted in vivo experiments in zebrafish. We found that knockdown of pcgf5a using morpholino resulted in the downregulated expression of neurodevelopmental genes such as sox2, sox3, and foxg1 in zebrafish embryos. Consequently, these changes led to neurodevelopmental defects. In conclusion, our study highlights the important role of Pcgf5 in neural induction and the determination of neural cell fate.
Collapse
Affiliation(s)
- Xuan Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Chunying Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Shiyu Liu
- International Center, Jinan Foreign Language School, Jinan, 250108, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| |
Collapse
|
4
|
Potes Y, Bermejo-Millo JC, Mendes C, Castelão-Baptista JP, Díaz-Luis A, Pérez-Martínez Z, Solano JJ, Sardão VA, Oliveira PJ, Caballero B, Coto-Montes A, Vega-Naredo I. p66Shc signaling and autophagy impact on C2C12 myoblast differentiation during senescence. Cell Death Dis 2024; 15:200. [PMID: 38459002 PMCID: PMC10923948 DOI: 10.1038/s41419-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Catarina Mendes
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José P Castelão-Baptista
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PDBEB - Doctoral Program in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Microbiology service, University Central Hospital of Asturias, Oviedo, Spain
| | - Juan J Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, Av. Doctores Fernández Vega, Oviedo, Spain
| | - Vilma A Sardão
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA-Portugal - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
5
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
6
|
Li Q, Wang SJ, Wang WJ, Ye YC, Ling YQ, Dai YF. PAK4-relevant proliferation reduced by cell autophagy via p53/mTOR/p-AKT signaling. Transl Cancer Res 2023; 12:461-472. [PMID: 37033362 PMCID: PMC10080326 DOI: 10.21037/tcr-22-2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
Background P21-activated kinase 4 (PAK4) involves in cell proliferation in cancer and mutually regulates with p53, a molecule is demonstrated to control cell autophagy by mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling. Since the signaling exhibits an association with PAK family members in cell autophagy, it implies that PAK4-relevant proliferation may be impacted by autophagy via p53 with a lack of evidence in cancer cells. Methods In this research, transient and stable PAK4-knockdown human hepatocarcinoma cell lines (HepG2) were constructed by transfection of PAK4-RNA interference (RNAi) plasmid and lentivirus containing PAK4-RNAi plasmid, respectively. We investigated cell proliferation using methyl thiazolyl tetrazolium (MTT) and Cell Counting Kit 8 (CCK8) assays, cell cycle by flow cytometry (FCM) and cell autophagy by monodansylcadaverine (MDC) staining and autophagic biomarker's expression, and detected the expressions of p53, mTOR, phosphorylated-AKT (p-AKT) and AKT by immunofluorescence and western blot to explore the mechanism. Results We successfully constructed transient and stable PAK4-knockdown HepG2 cell lines, and detected dysfunction of the cells' proliferation. An increased expression of p53, as a molecule of cell-cycle-surveillance on G1/S phase, was demonstrated in the cells although the cell cycle blocked at G2/M. And then, we detected increased autophagosome and autophagic biomarker LC3-II, and decreased expressions in p-AKT and mTOR. Conclusions The proliferation is reduced in PAK4-knockdown HepG2 cells, which is relative to not only cell cycle arrest but also cell autophagy, and p53/mTOR/p-AKT signaling involves in the cell progress. The findings provide a new mechanism on PAK4 block in cancer therapy.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Su-Jie Wang
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wen-Jia Wang
- Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yu-Cai Ye
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Ya-Fei Dai
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Rubio-Tomás T, Sotiriou A, Tavernarakis N. The interplay between selective types of (macro)autophagy: Mitophagy and xenophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:129-157. [PMID: 36858654 DOI: 10.1016/bs.ircmb.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autophagy is a physiological response, activated by a myriad of endogenous and exogenous cues, including DNA damage, perturbation of proteostasis, depletion of nutrients or oxygen and pathogen infection. Upon sensing those stimuli, cells employ multiple non-selective and selective autophagy pathways to promote fitness and survival. Importantly, there are a variety of selective types of autophagy. In this review we will focus on autophagy of bacteria (xenophagy) and autophagy of mitochondria (mitophagy). We provide a brief introduction to bulk autophagy, as well as xenophagy and mitophagy, highlighting their common molecular factors. We also describe the role of xenophagy and mitophagy in the detection and elimination of pathogens by the immune system and the adaptive mechanisms that some pathogens have developed through evolution to escape the host autophagic response. Finally, we summarize the recent articles (from the last five years) linking bulk autophagy with xenophagy and/or mitophagy in the context on developmental biology, cancer and metabolism.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
8
|
Zhang X, Liu H, Wang H, Zhao R, Lu Q, Liu Y, Han Y, LuluRen, Pan H, Han W. B3galt5 deficiency attenuates hepatocellular carcinoma by suppressing mTOR/p70s6k-mediated glycolysis. Cell Mol Life Sci 2022; 80:8. [PMID: 36495345 PMCID: PMC11072394 DOI: 10.1007/s00018-022-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high morbidity and mortality. Beta-1,3-galactosyltransferase 5 (b3galt5) plays crucial roles in protein glycosylation, but its function in HCC remains unclear. Here, we investigated the role and underlying mechanism of b3galt5 in HCC. We found that b3galt5 is highly expressed and associated with a poor prognosis in HCC patients. In vitro studies showed that b3galt5 promoted the proliferation and survival of HCC cells. We also demonstrated that b3galt5 deficiency suppressed hepatocarcinogenesis in DEN/TCPOBOP-induced HCC. Further investigation confirmed that b3galt5 promoted aerobic glycolysis in HCC. Mechanistically, b3galt5 promoted glycolysis by activating the mTOR/p70s6k pathway through O-linked glycosylation modification on mTOR. Moreover, p70s6k inhibition reduced the expression of key glycolytic enzymes and the glycolysis rate in b3galt5-overexpressing cells. Our study uncovers a novel mechanism by which b3galt5 mediates glycolysis in HCC and highlights the b3galt5-mTOR/p70s6k axis as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Department of Medical Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - LuluRen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
9
|
Boorman E, Killick R, Aarsland D, Zunszain P, Mann GE. NRF2: An emerging role in neural stem cell regulation and neurogenesis. Free Radic Biol Med 2022; 193:437-446. [PMID: 36272667 DOI: 10.1016/j.freeradbiomed.2022.10.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The birth of new neurons from neural stem cells (NSC)s during developmental and adult neurogenesis arises from a myriad of highly complex signalling cascades. Emerging as one of these is the nuclear factor erythroid 2-related factor (NRF2)-signaling pathway. Regulation by NRF2 is reported to span the neurogenic process from early neural lineage specification and NSC regulation to neuronal fate commitment and differentiation. Here, we review these reports selecting only those where NRF2 signaling was directly manipulated to provide a clearer case for a direct role of NRF2 in embryonic and adult neurogenesis. With few studies providing mechanistic insight into this relationship, we lastly discuss key pathways linking NRF2 and stem cell regulation outside the neural lineage to shed light on mechanisms that may also be relevant to NSCs and neurogenesis.
Collapse
Affiliation(s)
- Emily Boorman
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; King's BHF Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard Killick
- Department of Old Age Psychiatry Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
10
|
Pinho ACO, Santos D, Baldeiras I, Burgeiro A, Leal EC, Carvalho E. Mitochondrial respiration in thoracic perivascular adipose tissue of diabetic mice. J Endocrinol 2022; 254:169-184. [PMID: 35904484 DOI: 10.1530/joe-21-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Introduction Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction. Methods We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP). Results UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition. Conclusions Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Diana Santos
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Ana Burgeiro
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Emelindo C Leal
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
- APDP-Portuguese Diabetes Association, Lisbon, Portugal
| |
Collapse
|
11
|
Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 2022; 13:394. [PMID: 35449193 PMCID: PMC9023565 DOI: 10.1038/s41419-022-04848-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Primary liver cancer mainly includes the following four types: hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA). Recent studies have indicated that there are differences in cancer stem cell (CSC) properties among different types of liver cancer. Liver cancer stem cells (LCSCs), also called liver tumor-initiating cells, have been viewed as drivers of tumor initiation and metastasis. Many mechanisms and factors, such as mitophagy, mitochondrial dynamics, epigenetic modifications, the tumor microenvironment, and tumor plasticity, are involved in the regulation of cancer stemness in liver cancer. In this review, we analyze cancer stemness in different liver cancer types. Moreover, we further evaluate the mechanism of cancer stemness maintenance of LCSCs and discuss promising treatments for eradicating LCSCs.
Collapse
|
12
|
McCoin CS, Franczak E, Deng F, Pei D, Ding WX, Thyfault JP. Acute exercise rapidly activates hepatic mitophagic flux. J Appl Physiol (1985) 2022; 132:862-873. [PMID: 35142562 PMCID: PMC8934677 DOI: 10.1152/japplphysiol.00704.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 01/18/2023] Open
Abstract
Exercise is critical for improving metabolic health and putatively maintains or enhances mitochondrial quality control in metabolic tissues. Although previous work has shown that exercise elicits hepatic mitochondrial biogenesis, it is unknown if acute exercise activates hepatic mitophagy, the selective degradation of damaged or low-functioning mitochondria. We tested if an acute bout of treadmill running increased hepatic mitophagic flux both right after and 2-h postexercise in 15- to 24-wk-old C57BL/6J female mice. Acute exercise did not significantly increase markers of autophagic flux, however, mitophagic flux was activated 2-h post-treadmill running as measured by accumulation of both LC3-II and p62 in isolated mitochondria in the presence of leupeptin, an inhibitor of autophagosome degradation. Furthermore, mitochondrial-associated ubiquitin, which recruits the autophagy receptor protein p62, was also significantly increased at 2 h. Further examination via Western blot and proteomics analysis revealed that acute exercise elicits a time-dependent, dynamic activation of mitophagy pathways. Moreover, the results suggest that exercise-induced hepatic mitophagy is likely mediated by both polyubiquitination and receptor-mediated signaling pathways. Overall, we provide evidence that acute exercise activates hepatic mitophagic flux while also revealing specific receptor-mediated proteins by which exercise maintains mitochondrial quality control in the liver.NEW & NOTEWORTHY This study provides evidence that acute exercise activates hepatic mitophagic flux and mitochondrial polyubiquitination while additionally revealing specific receptor-mediated proteins by which exercise maintains mitochondrial quality control in the liver.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri
- Center for Children's Healthy Lifestyles and Nutrition, Children's Mercy Kansas City, Kansas City, Missouri
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Edziu Franczak
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - John P Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Children's Mercy Kansas City, Kansas City, Missouri
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
13
|
Cui X, Yang Y, Zhang M, Liu S, Wang H, Jiao F, Bao L, Lin Z, Wei X, Qian W, Shi X, Su C, Qian Y. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep. Front Immunol 2022; 13:1088850. [PMID: 36936474 PMCID: PMC10015891 DOI: 10.3389/fimmu.2022.1088850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
Introduction Currently, the anti-oxidation of active ingredients in mulberry leaves (MLs) and their forage utilization is receiving increasing attention. Here, we propose that MLs supplementation improves oxidative resistance and immunity. Methods We conducted a trial including three groups of growing mutton sheep, each receiving fermented mulberry leaves (FMLs) feeding, dried mulberry leaves (DMLs) feeding or normal control feeding without MLs. Results Transcriptomic and metabolomic analyses revealed that promoting anti-oxidation and enhancing disease resistance of MLs is attributed to improved tryptophan metabolic pathways and reduced peroxidation of polyunsaturated fatty acids (PUFAs). Furthermore, immunity was markedly increased after FMLs treatment by regulating glycolysis and mannose-6-phosphate pathways. Additionally, there was better average daily gain in the MLs treatment groups. Conclusion These findings provide new insights for understanding the beneficial effects of MLs in animal husbandry and provide a theoretical support for extensive application of MLs in improving nutrition and health care values.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chao Su
- *Correspondence: Chao Su, ; Yonghua Qian,
| | | |
Collapse
|
14
|
Neurogenic Potential of the 18-kDa Mitochondrial Translocator Protein (TSPO) in Pluripotent P19 Stem Cells. Cells 2021; 10:cells10102784. [PMID: 34685764 PMCID: PMC8534396 DOI: 10.3390/cells10102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
The 18-kDa translocator protein (TSPO) is a key mitochondrial target by which different TSPO ligands exert neuroprotective effects. We assayed the neurogenic potential of TSPO to induce the neuronal differentiation of pluripotent P19 stem cells in vitro. We studied changes in cell morphology, cell proliferation, cell death, the cell cycle, mitochondrial functionality, and the levels of pluripotency and neurogenesis of P19 stem cells treated with the TSPO ligand, PK 11195, in comparison to differentiation induced by retinoid acid (RA) and undifferentiated P19 stem cells. We observed that PK 11195 was able to activate the differentiation of P19 stem cells by promoting the development of embryoid bodies. PK 11195 also induced changes in the cell cycle, decreased cell proliferation, and activated cell death. Mitochondrial metabolism was also enhanced by PK 11195, thus increasing the levels of reactive oxygen species, Ca2+, and ATP as well as the mitochondrial membrane potential. Markers of pluripotency and neurogenesis were also altered during the cell differentiation process, as PK 11195 induced the differentiation of P19 stem cells with a high predisposition toward a neuronal linage, compared to cell differentiation induced by RA. Thus, we suggest a relevant neurogenic potential of TSPO along with broad therapeutic implications.
Collapse
|
15
|
Garcia I, Calderon F, la Torre PD, Vallier SS, Rodriguez C, Agarwala D, Keniry M, Innis-Whitehouse W, Gilkerson R. Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts. Mitochondrion 2021; 57:88-96. [PMID: 33383158 PMCID: PMC7904612 DOI: 10.1016/j.mito.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.
Collapse
Affiliation(s)
- Iraselia Garcia
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA; Department of Biology, South Texas College, McAllen, TX, USA
| | - Fredy Calderon
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Patrick De la Torre
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Shaynah St Vallier
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Cristobal Rodriguez
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Divya Agarwala
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA; Clinical Laboratory Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
16
|
Xing D, Liu W, Li JJ, Liu L, Guo A, Wang B, Yu H, Zhao Y, Chen Y, You Z, Lyu C, Li W, Liu A, Du Y, Lin J. Engineering 3D functional tissue constructs using self-assembling cell-laden microniches. Acta Biomater 2020; 114:170-182. [PMID: 32771588 DOI: 10.1016/j.actbio.2020.07.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Tissue engineering using traditional size fixed scaffolds and injectable biomaterials are faced with many limitations due to the difficulties of producing macroscopic functional tissues. In this study, 3D functional tissue constructs were developed by inducing self-assembly of microniches, which were cell-laden gelatin microcryogels. During self-assembly, the accumulation of extracellular matrix (ECM) components was found to strengthen cell-cell and cell-ECM interactions, leading to the construction of a 'native' microenvironment that better preserved cell viability and functions. MSCs grown in self-assembled constructs showed increased maintenance of stemness, reduced senescence and improved paracrine activity compared with cells grown in individual microniches without self-assembly. As an example of applying the self-assembled constructs in tissue regeneration, the constructs were used to induce in vivo articular cartilage repair and successfully regenerated hyaline-like cartilage tissue in the absence of other extrinsic factors. This unique approach of developing self-assembled 3D functional constructs holds great promise for the generation of tissue engineered organoids and repair of challenging tissue defects. STATEMENT OF SIGNIFICANCE: We developed 3D functional tissue constructs using a unique gelatin-based microscopic hydrogel (microcryogels). Mesenchymal stem cells (MSCs) were loaded into gelatin microcryogels to form microscopic cell-laden units (microniches), which were induced to undergo self-assembly using a specially designed 3D printed frame. Extracellular matrix accumulation among the microniches resulted in self-assembled macroscopic constructs with superior ability to maintain the phenotypic characteristics and stemness of MSCs, together with the suppression of senescence and enhanced paracrine function. As an example of application in tissue regeneration, the self-assembled constructs were shown to successfully repair articular cartilage defects without any other supplements. This unique strategy for developing 3D functional tissue constructs allows the optimisation of stem cell functions and construction of biomimetic tissue organoids.
Collapse
Affiliation(s)
- Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anqi Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yu Zhao
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China
| | - Yuling Chen
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Aifeng Liu
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China.
| |
Collapse
|
17
|
Hong M, Li J, Li S, M.Almutairi M. Acetylshikonin Sensitizes Hepatocellular Carcinoma Cells to Apoptosis through ROS-Mediated Caspase Activation. Cells 2019; 8:cells8111466. [PMID: 31752383 PMCID: PMC6912742 DOI: 10.3390/cells8111466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown strong and explicit cancer cell-selectivity, which results in little toxicity toward normal tissues, and has been recognized as a potential, relatively safe anticancer agent. However, several cancers are resistant to the apoptosis induced by TRAIL. A recent study found that shikonin b (alkannin, 5,8-dihydroxy-2-[(1S)-1-hydroxy-4-methylpent-3-en-1-yl]naphthalene-1,4-dione) might induce apoptosis in TRAIL-resistant cholangiocarcinoma cells through reactive oxygen species (ROS)-mediated caspases activation. However, the strong cytotoxic activity has limited its potential as an anticancer drug. Thus, the current study intends to discover novel shikonin derivatives which can sensitize the liver cancer cell to TRAIL-induced apoptosis while exhibiting little toxicity toward the normal hepatic cell. The trypan blue exclusion assay, western blot assay, 4′,6-diamidino-2-phenylindole (DAPI) staining and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay as well as the ‘comet’ assay, were used to study the underlying mechanisms of cell death and to search for any mechanisms of an enhancement of TRAIL-mediated apoptosis in the presence of ASH. Herein, we demonstrated that non-cytotoxic doses of acetylshikonin (ASH), one of the shikonin derivatives, in combination with TRAIL, could promote apoptosis in HepG2 cells. Further studies showed that application of ASH in a non-cytotoxic dose (2.5 μM) could increase intracellular ROS production and induce DNA damage, which might trigger a cell intrinsic apoptosis pathway in the TRAIL-resistant HepG2 cell. Combination treatment with a non-cytotoxic dose of ASH and TRAIL activated caspase and increased the cleavage of PARP-1 in the HepG2 cell. However, when intracellular ROS production was suppressed by N-acetyl-l-cysteine (NAC), the synergistic effects of ASH and TRAIL on hepatocellular carcinoma (HCC) cell apoptosis was abolished. Furthermore, NAC could alleviate p53 and the p53 upregulated modulator of apoptosis (PUMA) expression induced by TRAIL and ASH. Small (or short) interfering RNA (siRNA) targeting PUMA or p53 significantly reversed ASH-mediated sensitization to TRAIL-induced apoptosis. In addition, Bax gene deficiency also abolished ASH-induced TRAIL sensitization. An orthotopical HCC implantation mice model further confirmed that co-treated ASH overcomes TRAIL resistance in HCC cells without exhibiting potent toxicity in vivo. In conclusion, the above data suggested that ROS could induce DNA damage and activating p53/PUMA/Bax signaling, and thus, this resulted in the permeabilization of mitochondrial outer membrane and activating caspases as well as sensitizing the HCC cell to apoptosis induced by TRAIL and ASH treatment.
Collapse
Affiliation(s)
- Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 51000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 51000, China
- Correspondence: (M.H.); (M.M.A.); Tel./Fax: +86-20-39352328 (M.H.); +785-864-6192 (M.M.A.)
| | - Jinke Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA; (J.L.); (S.L.)
| | - Siying Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA; (J.L.); (S.L.)
| | - Mohammed M.Almutairi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS 66045, USA; (J.L.); (S.L.)
- Correspondence: (M.H.); (M.M.A.); Tel./Fax: +86-20-39352328 (M.H.); +785-864-6192 (M.M.A.)
| |
Collapse
|
18
|
Yu L, Liu Z, Qiu L, Hao L, Guo J. Ipatasertib sensitizes colon cancer cells to TRAIL-induced apoptosis through ROS-mediated caspase activation. Biochem Biophys Res Commun 2019; 519:812-818. [PMID: 31558316 DOI: 10.1016/j.bbrc.2019.09.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023]
Abstract
Due to TRAIL's explicit cancer cell-selectivity, the current study aimed to explore novel agents that sensitized cancer cell for TRAIL-induced apoptosis while sparing normal cell. In this study, we found that TRAIL could induce PARP-1 cleavage and apoptosis in colon cancer HCT116 cell, but HT-29 cell was not sensitive to TRAIL. However, non-cytotoxic doses of ipatasertib in conjunction with TRAIL could induce apoptosis in HT-29 cell. Mechanism studies showed that intracellular ROS level was significant increased during ipatasertib treatment. Excessive cellular levels of ROS further induced DNA damage and subsequently activated apoptotic signaling pathways in TRAIL-resistant HT-29 cells. Combined treatment with sub-toxic doses of ipatasertib and TRAIL leads to caspase activation and PARP-1 cleavage in HT-29 cells. Pretreated with NAC, an antioxidant, could inhibit ROS production and PARP-1 cleavage as well as prevent cell apoptotic death induced by combination therapy with TRAIL and ipatasertib. In addition, NAC can block the up-regulation of p53/PUMA induced by combined treatment with ipatasertib and TRAIL. Transfection with p53 or Puma siRNA for 48 h can reverse ipatasertib-mediated TRAIL sensitization. In conclusion, p53 and PUMA may play a pivotal role in sensitizing colon cancer cell to TRAIL-induced apoptosis by sub-toxic doses of ipatasertib treatment.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ling Qiu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Linlin Hao
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jie Guo
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
19
|
Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J, Lizard G, Cherkaoui-Malki M, Savary S. Peroxisomes in Immune Response and Inflammation. Int J Mol Sci 2019; 20:ijms20163877. [PMID: 31398943 PMCID: PMC6721249 DOI: 10.3390/ijms20163877] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
The immune response is essential to protect organisms from infection and an altered self. An organism’s overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Pierre Andreoletti
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Doriane Trompier
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Anne Vejux
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Margret H Bülow
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Gérard Lizard
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Mustapha Cherkaoui-Malki
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France.
| |
Collapse
|