1
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
2
|
Shen K, Shi Y, Wang X, Leung SW. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024:AD.202.0424. [PMID: 39122454 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Ws Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
De Cól JP, de Lima EP, Pompeu FM, Cressoni Araújo A, de Alvares Goulart R, Bechara MD, Laurindo LF, Méndez-Sánchez N, Barbalho SM. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int J Mol Sci 2024; 25:3694. [PMID: 38612504 PMCID: PMC11011299 DOI: 10.3390/ijms25073694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.
Collapse
Affiliation(s)
- Júlia Pauli De Cól
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Fernanda Moris Pompeu
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-080, Brazil;
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo 17500-000, Brazil
| |
Collapse
|
4
|
Chen J, Su YH, Wang M, Zhang YC. Emerging Role of Sorting Nexin 17 in Human Health and Disease. Curr Protein Pept Sci 2024; 25:814-825. [PMID: 38874037 DOI: 10.2174/0113892037284582240522155112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Hong Su
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Meng Wang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Chen Zhang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
5
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Zhang M, Lai J, Wu Q, Lai J, Su J, Zhu B, Li Y. Naringenin Induces HepG2 Cell Apoptosis via ROS-Mediated JAK-2/STAT-3 Signaling Pathways. Molecules 2023; 28:molecules28114506. [PMID: 37298981 DOI: 10.3390/molecules28114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative stress in naringenin-induced cytotoxicity in HepG2 cells remain elusive. Based on the above, the present study examined the effect of naringenin on the cytotoxic and anticancer mechanisms of HepG2 cells. Naringenin-induced HepG2 cell apoptosis was confirmed via the accumulation of the sub-G1 cell population, phosphatidylserine exposure, mitochondrial transmembrane potential loss, DNA fragmentation, caspase-3 activation, and caspase-9 activation. Furthermore, naringenin enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of JAK-2/STAT-3 were inhibited, and caspase-3 was activated to advance cell apoptosis. These results suggest that naringenin plays an important role in inducing apoptosis in HepG2 cells and that naringenin may be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianmei Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qianlong Wu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
7
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
8
|
Li DY, Wen JH, Liang S, Tang JX. The Essential Role of Sorting Nexin 5 in Virus-Induced Autophagy. Front Immunol 2022; 13:947384. [PMID: 35898490 PMCID: PMC9309476 DOI: 10.3389/fimmu.2022.947384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
|
9
|
Chu L, Yi Q, Yan Y, Peng J, Li Z, Jiang F, He Q, Ouyang L, Wu S, Fu C, Liu Y, Xu Z. A Prognostic Signature Consisting of Pyroptosis-Related Genes and SCAF11 for Predicting Immune Response in Breast Cancer. Front Med (Lausanne) 2022; 9:882763. [PMID: 35646948 PMCID: PMC9133489 DOI: 10.3389/fmed.2022.882763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis, characterized as an inflammasome-mediated cell death pathway, may be participated in tumorigenesis and progression. However, the underlying molecular function and mechanism of pyroptosis in BRCA remain unclear. In our study, we aimed to develop a prognostic signature in BRCA based on pyroptosis-associated genes. Data was downloaded from TCGA database, and then we screened 760 female BRCA samples and 104 normal breast tissues as the training set. Seven pyroptosis-related genes (CASP9, GPX4, IL18, NLRC4, SCAF11, TIRAP, and TNF) were identified as the pyroptosis-related prognostic model for BRCA using LASSO Cox regression. We subsequently tested the prognostic value of pyroptosis-associated gene signature in a validation set, GSE 20685. Time-dependent receiver operating characteristic analysis demonstrated the credible predictive capacity of this pyroptosis-associated gene signature. The area under the curves were 0.806 at 3 years, 0.787 at 5 years, 0.775 at 8 years, and 0.793 at 10 years in the training set, and 0.824 at 5 years, 0.808 at 8 years, and 0.790 at 10 years in the validation set. Furthermore, there are currently few data on SCAF11 regulating pyroptosis. To clarify this issue, we performed integrative bioinformatics and experimental analysis. Knocking down SCAF11 possessed an anti-cancer effect in terms of inhibiting cell viability and suppressing colony-formation in in-vitro functional assays. Meanwhile, the biological functions of SCAF11 in BRCA were further validated with several algorithms, such as Xiantao tool, LinkedOmics, GEPIA2, and TISIDB. These findings indicated that the expression of SCAF11 was significantly correlated with diverse tumor-infiltrating lymphocytes (TILs), including T central memory cell (Tcm), and type 2 T helper cell (Th2), etc. Functional enrichment analysis suggested that co-expression genes of SCAF11 primarily participated in inflammation and immune-related signaling pathways, such as oxidative phosphorylation, antimicrobial humoral response, and immunoglobulin complex. Moreover, SCAF11 expression was positively correlated with several immune checkpoints, including PD-L1, B7H3, and PDCD1LG2. Taken together, this study uncovered that pyroptosis-associated gene signature might be applied as an effective independent predictor in patients with BRCA. The pyroptosis-related gene SCAF11 might play potential roles in the regulation of immune microenvironment in BRCA.
Collapse
Affiliation(s)
- Ling Chu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- Jinwu Peng
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhijie Xu
| |
Collapse
|
10
|
Qureshi YH, Berman DE, Marsh SE, Klein RL, Patel VM, Simoes S, Kannan S, Petsko GA, Stevens B, Small SA. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep 2022; 38:110262. [PMID: 35045281 PMCID: PMC8830374 DOI: 10.1016/j.celrep.2021.110262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/14/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023] Open
Abstract
Disruption of retromer-dependent endosomal trafficking is considered pathogenic in late-onset Alzheimer's disease (AD). Here, to investigate this disruption in the intact brain, we turn to a genetic mouse model where the retromer core protein VPS35 is depleted in hippocampal neurons, and then we replete VPS35 using an optimized viral vector protocol. The VPS35 depletion-repletion studies strengthen the causal link between the neuronal retromer and AD-associated neuronal phenotypes, including the acceleration of amyloid precursor protein cleavage and the loss of synaptic glutamate receptors. Moreover, the studies show that the neuronal retromer can regulate a distinct, dystrophic, microglia morphology, phenotypic of hippocampal microglia in AD. Finally, the neuronal and, in part, the microglia responses to VPS35 depletion were found to occur independent of tau. Showing that the neuronal retromer can regulate AD-associated pathologies in two of AD's principal cell types strengthens the link, and clarifies the mechanism, between endosomal trafficking and late-onset sporadic AD.
Collapse
Affiliation(s)
- Yasir H Qureshi
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Diego E Berman
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vivek M Patel
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Suvarnambiga Kannan
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| | - Scott A Small
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Primary central nervous system lymphomas express immunohistochemical factors of autophagy. Sci Rep 2021; 11:22259. [PMID: 34782660 PMCID: PMC8594774 DOI: 10.1038/s41598-021-01693-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive and rare disease. Autophagy is a catabolic mechanism boosting various tumors, including lymphomas; its inhibition is thus a promising therapeutic target. Its presence has never been studied in PCNSLs. We conducted a retrospective immunohistochemical study of 25 PCNSLs for LC3B, p62, and M6PR, comparing it with clinicopathological characteristics. Fourteen (56%) and eleven (44%) PCNSLs were of low and high LC3B expression, respectively. p62 expression was present in most tumors (n = 21, 84%). M6PR was present in all tumors, with 14 (56%) and 11 (44%) cases being of low and high M6PR expression, respectively. LC3B expression was correlated with the performance status (PS) (p = 0.04). No association was found with other clinical parameters, such as deep structure invasion, multiple lesions, complete response, and recurrence after response. p62 showed a strong positive association with MUM1 expression (p = 0.0005). M6PR expression showed a positive correlation (p = 0.04) with PD-L1 expression. No association was found with p53, Ki67, CD8, BCL2, BCL6, or double MYC/BLC2 co-expressors. No association of LC3B, p62, and M6PR expression with survival was found. Our findings provide evidence for the possible presence of autophagic markers in PCNSLs and, thus, for possible treatment targets.
Collapse
|
12
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
13
|
Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol 2021; 12:701301. [PMID: 34305609 PMCID: PMC8299054 DOI: 10.3389/fphar.2021.701301] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Caspase-9, a cysteine-aspartic protease known for its role as an initiator of intrinsic apoptosis, regulates physiological cell death and pathological tissue degeneration. Its nonapoptotic functions, including regulation of cellular differentiation/maturation, innate immunity, mitochondrial homeostasis, and autophagy, reveal a multimodal landscape of caspase-9 functions in health and disease. Recent work has demonstrated that caspase-9 can drive neurovascular injury through nonapoptotic endothelial cell dysfunction. CASP9 polymorphisms have been linked with various cancers, neurological disorders, autoimmune pathologies and lumbar disc disease. Clinical reports suggest alterations in caspase-9 expression, activity or function may be associated with acute and chronic neurodegeneration, retinal neuropathy, slow-channel myasthenic syndrome, lumbar disc disease, cardiomyopathies, atherosclerosis and autoimmune disease. Healthy tissues maintain caspase-9 activity at low basal levels, rendering supraphysiological caspase-9 activation a tractable target for therapeutic interventions. Strategies for selective inhibition of caspase-9 include dominant negative caspase-9 mutants and pharmacological inhibitors derived from the XIAP protein, whose Bir3 domain is an endogenous highly selective caspase-9 inhibitor. However, the mechanistic implications of caspase-9 expression and activation remain indeterminate in many pathologies. By assembling clinical reports of caspase-9 genetics, signaling and cellular localization in human tissues, this review identifies gaps between experimental and clinical studies on caspase-9, and presents opportunities for further investigations to examine the consequences of caspase activity in human disease.
Collapse
Affiliation(s)
- Maria I Avrutsky
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol M Troy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|