1
|
Metur SP, Song X, Mehta S, Dialynaki D, Bhattacharyya D, Yin Z, Tang D, Klionsky DJ. Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation. Cell Rep 2025; 44:115316. [PMID: 39954250 PMCID: PMC11913251 DOI: 10.1016/j.celrep.2025.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
Macroautophagy/autophagy is crucial for cell survival during nutrient starvation. Autophagy requires the coordinated function of several Atg proteins, including the Atg1 kinase, for efficient induction and execution. Recently, several RNA-binding proteins (RBPs) have been shown to post-transcriptionally regulate ATG1. However, a comprehensive understanding of autophagy regulation by RBPs via ATG1 is yet to be elucidated. Here, we utilize an in vitro approach to identify RBPs that specifically interact with ATG1 untranslated regions. We show that Npl3 and Pub1 interact with the ATG1 5' and 3' untranslated regions during nitrogen starvation. Furthermore, Npl3 and Pub1 coordinate to facilitate ATG1 mRNA export to the cytoplasm and its subsequent interaction with the translational machinery. Significantly, in non-small cell lung cancer cell lines, mammalian Pub1, TIA1, also positively regulates ULK1 protein expression and autophagy during serum starvation. Overall, our study highlights the regulatory landscape that fine-tunes Atg1 protein expression to sustain autophagy during nutrient starvation.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie Mehta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dimitra Dialynaki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Hossain MM, Mishra AK, Yadav AK, Ismail M, Sata TN, Sah AK, Banik A, Sharma G, Venugopal SK. Free fatty acid-induced DDX3 inhibits autophagy via miR-141 upregulation in diet-induced MASLD mice model system. Ann Hepatol 2024; 30:101758. [PMID: 39631458 DOI: 10.1016/j.aohep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the primary causes of chronic liver disease and may lead to liver cirrhosis and hepatocellular carcinoma. Recent reports suggested that DEAD-box RNA helicase (DDX3) acts as a sensor of free fat accumulation and may modulate the pathogenesis via miRNAs. Hence, we hypothesized that DDX3 might modulate MASLD progression via miRNA-141-mediated inhibition of Sirt-1 and autophagy. MATERIALS AND METHODS RNA and total protein were isolated from free fatty acid-treated HepG2 cells or CDAA-fed C57BL/6 mice (6 mice per group) for 6, 18, 32, or 54 weeks. The cells were transfected with DDX3 or miR-141 or siRNA to DDX3, and Western blots for autophagy markers were performed. RESULTS The FFAs induced the DDX3 and miRNA-141 expression, while downregulating Sirt-1, beclin-1, Atg7, and LC3-II. Overexpression of DDX3 resulted in increased miRNA-141. Overexpression of DDX3 or miRNA-141 downregulated Sirt-1 expression and autophagy marker proteins, while these effects were reversed with siRNA to DDX3. The expression of both DDX3 and miRNA-141 was significantly increased, while autophagy markers were downregulated in CDAA-fed mice. CONCLUSIONS These results confirmed that FFA-induced DDX3 induced the expression of miRNA-141, which in turn targeted Sirt-1 and decreased autophagy.
Collapse
Affiliation(s)
- Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amit K Mishra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - Ajay K Yadav
- Department of Medical and Molecular genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Md Ismail
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amrendra K Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Arnab Banik
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gopal Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
3
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Autophagy in Inflammatory Response against SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24054928. [PMID: 36902354 PMCID: PMC10002778 DOI: 10.3390/ijms24054928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The coronavirus disease pandemic, which profoundly reshaped the world in 2019 (COVID-19), and is currently ongoing, has affected over 200 countries, caused over 500 million cumulative cases, and claimed the lives of over 6.4 million people worldwide as of August 2022. The causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Depicting this virus' life cycle and pathogenic mechanisms, as well as the cellular host factors and pathways involved during infection, has great relevance for the development of therapeutic strategies. Autophagy is a catabolic process that sequesters damaged cell organelles, proteins, and external invading microbes, and delivers them to the lysosomes for degradation. Autophagy would be involved in the entry, endo, and release, as well as the transcription and translation, of the viral particles in the host cell. Secretory autophagy would also be involved in developing the thrombotic immune-inflammatory syndrome seen in a significant number of COVID-19 patients that can lead to severe illness and even death. This review aims to review the main aspects that characterize the complex and not yet fully elucidated relationship between SARS-CoV-2 infection and autophagy. It briefly describes the key concepts regarding autophagy and mentions its pro- and antiviral roles, while also noting the reciprocal effect of viral infection in autophagic pathways and their clinical aspects.
Collapse
|
5
|
González-Rodríguez P, Delorme-Axford E, Bernard A, Keane L, Stratoulias V, Grabert K, Engskog-Vlachos P, Füllgrabe J, Klionsky DJ, Joseph B. SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion. Cell Death Dis 2022; 13:953. [PMID: 36371383 PMCID: PMC9653477 DOI: 10.1038/s41419-022-05381-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elizabeth Delorme-Axford
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Amélie Bernard
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jens Füllgrabe
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
6
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
7
|
Liao Y, Fang Y, Zhu H, Huang Y, Zou G, Dai B, Rausch MA, Shi B. Concentrated Growth Factors Promote hBMSCs Osteogenic Differentiation in a Co-Culture System With HUVECs. Front Bioeng Biotechnol 2022; 10:837295. [PMID: 35387306 PMCID: PMC8979293 DOI: 10.3389/fbioe.2022.837295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Osteogenesis is a complex physiologic process that occurs during bone regeneration. This process requires several growth factors that act on bone marrow-derived mesenchymal stem cells (BMSCs). Concentrated growth factor (CGF) is a new-generation platelet-rich derivative that is an appealing autologous material for application in tissue repair and bone regenerative medicine because it contains a variety of fibrin and growth factors. In this study, the effects of CGF on the proliferation and osteogenic differentiation of hBMSCs and human umbilical vein endothelial cells (HUVECs) were explored with in vitro cell co-culture experiments. HBMSCs and HUVECs were directly co-cultured at the ratio of 1:2 under different concentrations (0, 2, 5, 10, 20%) of CGF for 7 days. Alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction were used to detect the effects of CGF on the expression of osteogenic genes (ALP, osteocalcin [OCN], type I collagen [COL-1], Runt-related transcription factor 2 [RUNX2]) and connexin 43 (CX43). RNA sequencing was used to explore potential regulated genes and signaling pathways that affect the osteogenesis of co-cultured hBMSCs exposed to CGF. The results showed higher expressions of ALP, COL-1, RUNX2, OCN, and CX43 in the direct co-culture group containing 10% CGF compared to the direct co-culture group without CGF and the indirect co-culture group. In summary, 10% CGF can significantly promote osteogenesis in hBMSCs directly co-cultured with HUVECs. Intercellular communication between the direct co-culture of hBMSCs and HUVECs through CX43 may be one of the main regulatory mechanisms.
Collapse
Affiliation(s)
- Yunyang Liao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youran Fang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hanghang Zhu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yue Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Gengsen Zou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Bowen Dai
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Macro Aoqi Rausch
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- *Correspondence: Macro Aoqi Rausch, ; Bin Shi,
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Macro Aoqi Rausch, ; Bin Shi,
| |
Collapse
|
8
|
Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 2022; 11:antiox11020304. [PMID: 35204187 PMCID: PMC8868404 DOI: 10.3390/antiox11020304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuxiang Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|