1
|
Yan H, Qi A, Lu Z, You Z, Wang Z, Tang H, Li X, Xu Q, Weng X, Du X, Zhao L, Wang H. Dual roles of AtNBR1 in regulating selective autophagy via liquid-liquid phase separation and recognition of non-ubiquitinated substrates in Arabidopsis. Autophagy 2024:1-12. [PMID: 39162855 DOI: 10.1080/15548627.2024.2391725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Selective macroautophagy/autophagy in metazoans involves the conserved receptors NBR1 and SQSTM1/p62. Both autophagy receptors manage ubiquitinated cargo recognition, while SQSTM1 has an additional, distinct role of facilitating liquid-liquid phase separation (LLPS) during autophagy. Given that plants lack SQSTM1, it is postulated that plant NBR1 may combine activities of both metazoan NBR1 and SQSTM1. However, the precise mechanism by which plant NBR1 recognizes non-ubiquitinated substrates and its ability to undergo LLPS during selective autophagy remain elusive. Here, we implicate both the ZZ-type zinc finger motif and the four-tryptophan domain of Arabidopsis NBR1 (AtNBR1) in the recognition of non-ubiquitinated cargo proteins. Additionally, we reveal that AtNBR1 indeed undergoes LLPS prior to ATG8-mediated autophagosome formation, crucial for heat stress resistance in Arabidopsis. Our findings unveil the dual roles of AtNBR1 in both cargo recognition and LLPS during plant autophagy and advance our understanding of NBR1-mediated autophagy in plants compared to metazoans.Abbreviations: ATG8: autophagy 8; Co-IP: co-immunoprecipitation; EXO70E2: exocyst subunit EXO70 family protein E2; FRAP: fluorescence recovery after photobleaching; FW domain: four-tryptophan domain; GFP: green fluorescent protein; HS: heat stress; LLPS: liquid-liquid phase separation; LIR: LC3-interacting region; NBR1: next to BRCA1 gene 1; PAS: phagophore assembly site; PB1 domain: Phox and Bem1 domain; RFP: red fluorescent protein; ROF1: rotamase FKBP 1; SARs: selective autophagy receptors; UBA domain: ubiquitin-associated domain; Y2H: yeast two-hybrid; ZZ domain: ZZ-type zinc finger motif domain.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong Province, China
| | - Ao Qi
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Zhen Lu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Zhengtao You
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Ziheng Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Haiying Tang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xinghai Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Qiao Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Wang Y, Xie D, Zheng X, Guo M, Qi Z, Yang P, Yu J, Zhou J. MAPK20-mediated ATG6 phosphorylation is critical for pollen development in Solanum lycopersicum L. HORTICULTURE RESEARCH 2024; 11:uhae069. [PMID: 38725462 PMCID: PMC11079483 DOI: 10.1093/hr/uhae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/25/2024] [Indexed: 05/12/2024]
Abstract
In flowering plants, male gametogenesis is tightly regulated by numerous genes. Mitogen-activated protein kinase (MAPK) plays a critical role in plant development and stress response, while its role in plant reproductive development is largely unclear. The present study demonstrated MAPK20 phosphorylation of ATG6 to mediate pollen development and germination in tomato (Solanum lycopersicum L.). MAPK20 was preferentially expressed in the stamen of tomato, and mutation of MAPK20 resulted in abnormal pollen grains and inhibited pollen viability and germination. MAPK20 interaction with ATG6 mediated the formation of autophagosomes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that ATG6 was phosphorylated by MAPK20 at Ser-265. Mutation of ATG6 in wild-type (WT) or in MAPK20 overexpression plants resulted in malformed and inviable pollens. Meanwhile, the number of autophagosomes in mapk20 and atg6 mutants was significantly lower than that of WT plants. Our results suggest that MAPK20-mediated ATG6 phosphorylation and autophagosome formation are critical for pollen development and germination.
Collapse
Affiliation(s)
- Yu Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Dongling Xie
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang T, Wang K, Dou S, Gao E, Hussey PJ, Lin Z, Wang P. Exo84c-regulated degradation is involved in the normal self-incompatible response in Brassicaceae. Cell Rep 2024; 43:113913. [PMID: 38442016 DOI: 10.1016/j.celrep.2024.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shengwei Dou
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE Durham, UK
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Du X, Weng X, Lyu B, Zhao L, Wang H. Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells. PLANT CELL REPORTS 2024; 43:97. [PMID: 38488911 DOI: 10.1007/s00299-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Binyang Lyu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Yagyu M, Yoshimoto K. New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1234-1251. [PMID: 37978884 DOI: 10.1093/jxb/erad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Autophagy is an evolutionarily conserved eukaryotic intracellular degradation process. Although the molecular mechanisms of plant autophagy share similarities with those in yeast and mammals, certain unique mechanisms have been identified. Recent studies have highlighted the importance of autophagy during vegetative growth stages as well as in plant-specific developmental processes, such as seed development, germination, flowering, and somatic reprogramming. Autophagy enables plants to adapt to and manage severe environmental conditions, such as nutrient starvation, high-intensity light stress, and heat stress, leading to intracellular remodeling and physiological changes in response to stress. In the past, plant autophagy research lagged behind similar studies in yeast and mammals; however, recent advances have greatly expanded our understanding of plant-specific autophagy mechanisms and functions. This review summarizes current knowledge and latest research findings on the mechanisms and roles of plant autophagy with the objective of improving our understanding of this vital process in plants.
Collapse
Affiliation(s)
- Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
6
|
Duckney PJ, Wang P, Hussey PJ. Mitophagy in plants: Emerging regulators of mitochondrial targeting for selective autophagy. J Microsc 2024. [PMID: 38297985 DOI: 10.1111/jmi.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The degradation and turnover of mitochondria is fundamental to Eukaryotes and is a key homeostatic mechanism for maintaining functional mitochondrial populations. Autophagy is an important pathway by which mitochondria are degraded, involving their sequestration into membrane-bound autophagosomes and targeting to lytic endosomal compartments (the lysosome in animals, the vacuole in plants and yeast). Selective targeting of mitochondria for autophagy, also known as mitophagy, distinguishes mitochondria from other cell components for degradation and is necessary for the regulation of mitochondria-specific cell processes. In mammals and yeast, mitophagy has been well characterised and is regulated by numerous pathways with diverse and important functions in the regulation of cell homeostasis, metabolism and responses to specific stresses. In contrast, we are only just beginning to understand the importance and functions of mitophagy in plants, chiefly as the proteins that target mitochondria for autophagy in plants are only recently emerging. Here, we discuss the current progress of our understanding of mitophagy in plants, the importance of mitophagy for plant life and the regulatory autophagy proteins involved in mitochondrial degradation. In particular, we will discuss the recent emergence of mitophagy receptor proteins that selectively target mitochondria for autophagy, and discuss the missing links in our knowledge of mitophagy-regulatory proteins in plants compared to animals and yeast.
Collapse
Affiliation(s)
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
7
|
Yen CC, Hsu CM, Jiang PL, Jauh GY. Dynamic organelle changes and autophagic processes in lily pollen germination. BOTANICAL STUDIES 2024; 65:5. [PMID: 38273136 PMCID: PMC10811312 DOI: 10.1186/s40529-024-00410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.
Collapse
Affiliation(s)
- Chih-Chung Yen
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Chia-Mei Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Pei-Luen Jiang
- Department of Biotechnology, National Formosa University, Huwei Township, Yulin County, Taiwan.
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC.
- Molecular and Biological Agricultural Sciences, International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Shi Y, Yu B, Cheng S, Hu W, Liu F. The Change in Whole-Genome Methylation and Transcriptome Profile under Autophagy Defect and Nitrogen Starvation. Int J Mol Sci 2023; 24:14047. [PMID: 37762347 PMCID: PMC10530911 DOI: 10.3390/ijms241814047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Through whole-genome bisulfite sequencing and RNA-seq, we determined the potential impact of autophagy in regulating DNA methylation in Arabidopsis, providing a solid foundation for further understanding the molecular mechanism of autophagy and how plants cope with nitrogen deficiency. A total of 335 notable differentially expressed genes (DEGs) were discovered in wild-type Arabidopsis (Col-0-N) and an autophagic mutant cultivated under nitrogen starvation (atg5-1-N). Among these, 142 DEGs were associated with hypomethylated regions (hypo-DMRs) and were upregulated. This suggests a correlation between DNA demethylation and the ability of Arabidopsis to cope with nitrogen deficiency. Examination of the hypo-DMR-linked upregulated DEGs indicated that the expression of MYB101, an ABA pathway regulator, may be regulated by DNA demethylation and the recruitment of transcription factors (TFs; ERF57, ERF105, ERF48, and ERF111), which may contribute to the growth arrest induced by abscisic acid (ABA). Additionally, we found that DNA methylation might impact the biosynthesis of salicylic acid (SA). The promoter region of ATGH3.12 (PBS3), a key enzyme in SA synthesis, was hypomethylated, combined with overexpression of PBS3 and its potential TF AT3G46070, suggesting that autophagy defects may lead to SA-activated senescence, depending on DNA demethylation. These findings suggest that DNA hypomethylation may impact the mechanism by which Arabidopsis autophagy mutants (atg5-1) respond to nitrogen deficiency, specifically in relation to ABA and SA regulation. Our evaluation of hormone levels verified that these two hormones are significantly enriched under nitrogen deficiency in atg5-1-N compared to Col-0-N.
Collapse
Affiliation(s)
- Yunfeng Shi
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Baiyang Yu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| |
Collapse
|
9
|
Zhang T, Li Y, Li C, Zang J, Gao E, Kroon JT, Qu X, Hussey PJ, Wang P. Exo84c interacts with VAP27 to regulate exocytotic compartment degradation and stigma senescence. Nat Commun 2023; 14:4888. [PMID: 37580356 PMCID: PMC10425460 DOI: 10.1038/s41467-023-40729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
In plants, exocyst subunit isoforms exhibit significant functional diversity in that they are involved in either protein secretion or autophagy, both of which are essential for plant development and survival. Although the molecular basis of autophagy is widely reported, its contribution to plant reproduction is not very clear. Here, we have identified Exo84c, a higher plant-specific Exo84 isoform, as having a unique function in modulating exocytotic compartment degradation during stigmatic tissue senescence. This process is achieved through its interaction with the ER localised VAP27 proteins, which regulate the turnover of Exo84c through the autophagy pathway. VAP27 recruits Exo84c onto the ER membrane as well as numerous ER-derived autophagosomes that are labelled with ATG8. These Exo84c/exocyst and VAP27 positive structures are accumulated in the vacuole for degradation, and this process is partially perturbed in the exo84c knock-out mutants. Interestingly, the exo84c mutant showed a prolonged effective pollination period with higher seed sets, possibly because of the delayed stigmatic senescence when Exo84c regulated autophagy is blocked. In conclusion, our studies reveal a link between the exocyst complex and the ER network in regulating the degradation of exocytosis vesicles, a process that is essential for normal papilla cell senescence and flower receptivity.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yifan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Johan T Kroon
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Bullones A, Castro AJ, Lima-Cabello E, Fernandez-Pozo N, Bautista R, Alché JDD, Claros MG. Transcriptomic Insight into the Pollen Tube Growth of Olea europaea L. subsp. europaea Reveals Reprogramming and Pollen-Specific Genes Including New Transcription Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2894. [PMID: 37631106 PMCID: PMC10459472 DOI: 10.3390/plants12162894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The pollen tube is a key innovation of land plants that is essential for successful fertilisation. Its development and growth have been profusely studied in model organisms, but in spite of the economic impact of olive trees, little is known regarding the genome-wide events underlying pollen hydration and growth in this species. To fill this gap, triplicate mRNA samples at 0, 1, 3, and 6 h of in vitro germination of olive cultivar Picual pollen were analysed by RNA-seq. A bioinformatics R workflow called RSeqFlow was developed contemplating the best practices described in the literature, covering from expression data filtering to differential expression and clustering, to finally propose hub genes. The resulting olive pollen transcriptome consisted of 22,418 reliable transcripts, where 5364 were differentially expressed, out of which 173 have no orthologue in plants and up to 3 of them might be pollen-specific transcription factors. Functional enrichment revealed a deep transcriptional reprogramming in mature olive pollen that is also dependent on protein stability and turnover to allow pollen tube emergence, with many hub genes related to heat shock proteins and F-box-containing proteins. Reprogramming extends to the first 3 h of growth, including processes consistent with studies performed in other plant species, such as global down-regulation of biosynthetic processes, vesicle/organelle trafficking and cytoskeleton remodelling. In the last stages, growth should be maintained from persistent transcripts. Mature pollen is equipped with transcripts to successfully cope with adverse environments, even though the in vitro growth seems to induce several stress responses. Finally, pollen-specific transcription factors were proposed as probable drivers of pollen germination in olive trees, which also shows an overall increased number of pollen-specific gene isoforms relative to other plants.
Collapse
Affiliation(s)
- Amanda Bullones
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain;
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
- University Institute of Research on Olive Grove and Olive Oils (INUO), Universidad de Jaén, 23071 Jaen, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Malaga, Spain
| |
Collapse
|
11
|
Wang J, Zhang Q, Bao Y, Bassham D. Autophagic degradation of membrane-bound organelles in plants. Biosci Rep 2023; 43:BSR20221204. [PMID: 36562332 PMCID: PMC9842949 DOI: 10.1042/bsr20221204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
12
|
Shen K, Qu M, Zhao P. The Roads to Haploid Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:243. [PMID: 36678955 PMCID: PMC9865920 DOI: 10.3390/plants12020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 05/31/2023]
Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
Collapse
Affiliation(s)
- Kun Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxue Qu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Autophagy in the Lifetime of Plants: From Seed to Seed. Int J Mol Sci 2022; 23:ijms231911410. [PMID: 36232711 PMCID: PMC9570326 DOI: 10.3390/ijms231911410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
Collapse
|