1
|
Li Y, Liang L. Transcription Impairment of TMEM208 by ZBTB14 Suppresses Breast cancer Radiotherapy Resistance. J Mammary Gland Biol Neoplasia 2024; 29:20. [PMID: 39692812 DOI: 10.1007/s10911-024-09573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Zinc finger and BTB domain-containing protein (ZBTB) proteins have been implicated in different cellular processes, including DNA damage responses and cell cycle progression. However, the mechanism by which ZBTB14 modulates radiotherapy (RT) radioresistance (RT-R) remains to be elucidated. We aimed to elucidate the regulation mechanism of ZBTB14 in breast cancer (BC) RT-R. Using integrated bioinformatics prediction, ZBTB14 was identified as a hub transcription factor related to RT-R in BC. ZBTB14 was significantly under-expressed in non-responders and RT-R/BC cells, whereas its target transmembrane protein 208 (TMEM208) was significantly overexpressed in non-responders and RT-R/BC cells. Chromatin immunoprecipitation-qPCR and luciferase reporter assays revealed that ZBTB14 downregulated TMEM208 expression through transcriptional repression. Overexpression of ZBTB14 significantly inhibited the malignant biological behavior of BC cells and tumor growth in vivo, and further upregulation of TMEM208 reversed the biological activity and radiotherapy resistance of RT-R/BC cells inhibited by overexpression of ZBTB14.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Harbin, Heilongjiang, 150040, PR China
| | - Lili Liang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
2
|
Fang H, Shi X, Gao J, Yan Z, Wang Y, Chen Y, Zhang J, Guo W. TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization. Cell Death Discov 2024; 10:438. [PMID: 39414762 PMCID: PMC11484822 DOI: 10.1038/s41420-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
4
|
Wang M, Liu M, Yang C, Hu Y, Liao X, Liu Q. Autophagy Modulation in Therapeutic Strategy of Breast Cancer Drug Resistance. J Cancer 2024; 15:5462-5476. [PMID: 39247603 PMCID: PMC11375553 DOI: 10.7150/jca.97775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignancy globally. Autophagy plays a pivotal role in all stages of this disease, including development, metastasis, and onset. Therefore, it is envisaged that targeting cell autophagy through appropriate tactics would evolve into a novel breast cancer prevention and therapy strategy. A multitude of chemotherapeutic medications can stimulate autophagy in tumor cells. It has led to divergent opinions on the function of autophagy in cancer treatment, as both stimulating and blocking autophagy can improve the effectiveness of anticancer medications. Consequently, the decision of whether to stimulate or inhibit autophagy during breast cancer treatment has become crucial. Understanding the distinctive mechanisms of autophagy in BC and its significance in medication therapy might facilitate the creation of targeted treatment plans based on the roles particular to autophagy. This review summarizes recent studies on the autophagy mechanism in breast cancer and provides insights into autophagy-based BC therapeutic techniques, giving fresh avenues for future BC treatment.
Collapse
Affiliation(s)
- Maoqi Wang
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine in Jiangxi Province, Jiujiang, China
- Jiangxi Medical College of Nanchang University, Nanchang, China
| | - Mianxue Liu
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine in Jiangxi Province, Jiujiang, China
- Jiangxi Medical College of Nanchang University, Nanchang, China
| | - Cheng Yang
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine in Jiangxi Province, Jiujiang, China
- Jiangxi Medical College of Nanchang University, Nanchang, China
| | - Yingqiu Hu
- Emergency Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Liao
- Department of Breast Oncology, Nanchang People's Hospital, Nanchang, China
| | - Qiang Liu
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine in Jiangxi Province, Jiujiang, China
| |
Collapse
|
5
|
Andriani L, Ling YX, Yang SY, Zhao Q, Ma XY, Huang MY, Zhang YL, Zhang FL, Li DQ, Shao ZM. Sideroflexin-1 promotes progression and sensitivity to lapatinib in triple-negative breast cancer by inhibiting TOLLIP-mediated autophagic degradation of CIP2A. Cancer Lett 2024; 597:217008. [PMID: 38849012 DOI: 10.1016/j.canlet.2024.217008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.
Collapse
Affiliation(s)
- Lisa Andriani
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yun-Xiao Ling
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
7
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Liu R, Hong W, Hou D, Huang H, Duan C. Decoding Organelle Interactions: Unveiling Molecular Mechanisms and Disease Therapies. Adv Biol (Weinh) 2024; 8:e2300288. [PMID: 38717793 DOI: 10.1002/adbi.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Indexed: 07/13/2024]
Abstract
Organelles, substructures in the cytoplasm with specific morphological structures and functions, interact with each other via membrane fusion, membrane transport, and protein interactions, collectively termed organelle interaction. Organelle interaction is a complex biological process involving the interaction and regulation of several organelles, including the interaction between mitochondria-endoplasmic reticulum, endoplasmic reticulum-Golgi, mitochondria-lysosomes, and endoplasmic reticulum-peroxisomes. This interaction enables intracellular substance transport, metabolism, and signal transmission, and is closely related to the occurrence, development, and treatment of many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Herein, the mechanisms and regulation of organelle interactions are reviewed, which are critical for understanding basic principles of cell biology and disease development mechanisms. The findings will help to facilitate the development of novel strategies for disease prevention, diagnosis, and treatment opportunities.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
9
|
Huang Y, Gou T, Li W, Han F. Unraveling the immune functions of large yellow croaker Tmem208 in response to Pseudomonas plecoglossicida: Insights from cloning, expression profiling, and transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109584. [PMID: 38670411 DOI: 10.1016/j.fsi.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Tao Gou
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wanbo Li
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
10
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
11
|
Dai X, Wu Z, Ruan R, Chen J, Huang C, Lei W, Yao Y, Li L, Tang X, Xiong J, Feng M, Deng J. TMEM160 promotes tumor immune evasion and radiotherapy resistance via PD-L1 binding in colorectal cancer. Cell Commun Signal 2024; 22:168. [PMID: 38454413 PMCID: PMC10921666 DOI: 10.1186/s12964-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The effectiveness of anti-programmed cell death protein 1(PD-1)/programmed cell death 1 ligand 1(PD-L1) therapy in treating certain types of cancer is associated with the level of PD-L1. However, this relationship has not been observed in colorectal cancer (CRC), and the underlying regulatory mechanism of PD-L1 in CRC remains unclear. METHODS Binding of TMEM160 to PD-L1 was determined by co-immunoprecipitation (Co-IP) and GST pull-down assay.The ubiquitination levels of PD-L1 were verified using the ubiquitination assay. Phenotypic experiments were conducted to assess the role of TMEM160 in CRC cells. Animal models were employed to investigate how TMEM160 contributes to tumor growth.The expression and clinical significance of TMEM160 and PD-L1 in CRC tissues were evaluated by immunohistochemistry(IHC). RESULTS In our study, we made a discovery that TMEM160 interacts with PD-L1 and plays a role in stabilizing its expression within a CRC model. Furthermore, we demonstrated that TMEM160 hinders the ubiquitination-dependent degradation of PD-L1 by competing with SPOP for binding to PD-L1 in CRC cells. Regarding functionality, the absence of TMEM160 significantly inhibited the proliferation, invasion, metastasis, clonogenicity, and radioresistance of CRC cells, while simultaneously enhancing the cytotoxic effect of CD8 + T cells on tumor cells. Conversely, the upregulation of TMEM160 substantially increased these capabilities. In severely immunodeficient mice, tumor growth derived from lentiviral vector shTMEM160 cells was lower compared with that derived from shNC control cells. Furthermore, the downregulation of TMEM160 significantly restricted tumor growth in immune-competent BALB/c mice. In clinical samples from patients with CRC, we observed a strong positive correlation between TMEM160 expression and PD-L1 expression, as well as a negative correlation with CD8A expression. Importantly, patients with high TMEM160 expression exhibited a worse prognosis compared with those with low or no TMEM160 expression. CONCLUSIONS Our study reveals that TMEM160 inhibits the ubiquitination-dependent degradation of PD-L1 that is mediated by SPOP, thereby stabilizing PD-L1 expression to foster the malignant progress, radioresistance, and immune evasion of CRC cells. These findings suggest that TMEM160 holds potential as a target for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Zhipeng Wu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Jingyi Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Provincial Chest Hospital, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
12
|
Yang H, Zhou H, Fu M, Xu H, Huang H, Zhong M, Zhang M, Hua W, Lv K, Zhu G. TMEM64 aggravates the malignant phenotype of glioma by activating the Wnt/β-catenin signaling pathway. Int J Biol Macromol 2024; 260:129332. [PMID: 38232867 DOI: 10.1016/j.ijbiomac.2024.129332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Transmembrane protein 64 (TMEM64), a member of the family of transmembrane protein, is an α-helical membrane protein. Its precise role in various types of tumors, including glioma, is unclear. This study used immunohistochemical (IHC) staining, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to show that TMEM64 expression was significantly higher in glioma cells and tissues compared to normal cells and tissues, respectively. Additionally, a correlation between high TMEM64 expression and higher grade as well as a worse prognosis was found. TMEM64 enhanced cell proliferation and tumorigenicity while inhibiting glioma cell apoptosis in vitro and in vivo, according to loss- and gain-of-function studies. Mechanistically, it was discovered that TMEM64 increased the malignant phenotype of gliomas by accelerating the translocation of β-catenin from the cytoplasm to the nucleus, thereby activating the Wnt/β-catenin signaling pathway. Stimulation with the Wnt/β-catenin signaling pathway activator CHIR-99021 successfully reversed the malignant phenotype of glioma; however, these effects were inhibited upon TMEM64 silencing. Stimulation with the Wnt/β-catenin signaling pathway inhibitor XAV-939 successfully rescued the malignant phenotype of glioma, which was promoted upon TMEM64 overexpression. Our results provide that TMEM64 as a novel prognostic biomarker and a potential treatment target for glioma.
Collapse
Affiliation(s)
- Hui Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China.
| |
Collapse
|
13
|
Zhao H, Feng K, Lei J, Shu Y, Bo L, Liu Y, Wang L, Liu W, Ning S, Wang L. Identification of somatic mutation-driven enhancers and their clinical utility in breast cancer. iScience 2024; 27:108780. [PMID: 38303701 PMCID: PMC10831879 DOI: 10.1016/j.isci.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Somatic mutations contribute to cancer development by altering the activity of enhancers. In the study, a total of 135 mutation-driven enhancers, which displayed significant chromatin accessibility changes, were identified as candidate risk factors for breast cancer (BRCA). Furthermore, we identified four mutation-driven enhancers as independent prognostic factors for BRCA subtypes. In Her2 subtype, enhancer G > C mutation was associated with poorer prognosis through influencing its potential target genes FBXW9, TRIR, and WDR83. We identified aminoglutethimide and quinpirole as candidate drugs targeting the mutated enhancer. In normal subtype, enhancer G > A mutation was associated with poorer prognosis through influencing its target genes ALOX15B, LINC00324, and MPDU1. We identified eight candidate drugs such as erastin, colforsin, and STOCK1N-35874 targeting the mutated enhancer. Our findings suggest that somatic mutations contribute to breast cancer subtype progression by altering enhancer activity, which could be potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaopeng Shu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lin Bo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lixia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wangyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
14
|
Liu L, Wu J, Yan Y, Cheng S, Yu S, Wang Y. DERL2 (derlin 2) stabilizes BAG6 (BAG cochaperone 6) in chemotherapy resistance of cholangiocarcinoma. J Physiol Biochem 2024; 80:81-97. [PMID: 37815698 PMCID: PMC10810035 DOI: 10.1007/s13105-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
DERL2 (derlin 2) is a critical component of the endoplasmic reticulum quality control pathway system whose mutations play an important role in carcinogenesis, including cholangiocarcinoma (CHOL). However, its role and its underlying mechanism have yet to be elucidated. Herein, we revealed that DERL2 was highly expressed in CHOL and considered as an independent prognostic indicator for inferior survival in CHOL. DERL2 ectopically expressed in CHOL cells promoted cell proliferation and colony formation rates, and depleting DERL2 in CHOL cells curbed tumor growth in vitro and in vivo. More interestingly, the knockout of DERL2 augmented the growth-inhibitory effect of gemcitabine chemotherapy on CHOL cells by inducing cell apoptosis. Mechanistically, we discovered that DERL2 interacted with BAG6 (BAG cochaperone 6), thereby extending its half-life and reinforcing the oncogenic role of BAG6 in CHOL progression.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shoucai Cheng
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Hainan, 570312, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570311, China.
| |
Collapse
|
15
|
Niloy SI, Strege PR, Hannan EC, Cowan LM, Linsenmeier F, Friedrich O, Farrugia G, Beyder A. Stretch response of the mechano-gated channel TMEM63A in membrane patches and single cells. Am J Physiol Cell Physiol 2024; 326:C622-C631. [PMID: 38189136 PMCID: PMC11193453 DOI: 10.1152/ajpcell.00583.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.
Collapse
Affiliation(s)
- Sayeman Islam Niloy
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Peter R Strege
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth C Hannan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Luke M Cowan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Fabian Linsenmeier
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Hayashi Y, Takatori S, Warsame WY, Tomita T, Fujisawa T, Ichijo H. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J 2023; 42:e114272. [PMID: 37929762 PMCID: PMC10690474 DOI: 10.15252/embj.2023114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Chen X, Wang N, Liu JW, Zeng B, Chen GL. TMEM63 mechanosensitive ion channels: Activation mechanisms, biological functions and human genetic disorders. Biochem Biophys Res Commun 2023; 683:149111. [PMID: 37857161 DOI: 10.1016/j.bbrc.2023.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The transmembrane 63 (TMEM63) family of proteins are originally identified as homologs of the osmosensitive calcium-permeable (OSCA) channels in plants. Mechanosensitivity of OSCA and TMEM63 proteins are recently demonstrated in addition to their proposed activation mechanism by hyper/hypo-osmolarity. TMEM63 proteins exist in all animals, with a single member in Drosophila (TMEM63) and three members in mammals (TMEM63 A/B/C). In humans, monoallelic variants of TMEM63A have been reported to cause transient hypomyelination during infancy, or severe hypomyelination and global developmental delay. Heterozygous variants of TMEM63B are found in patients with intellectual disability and abnormal motor function and brain morphology. Biallelic variants of TMEM63C are associated with hereditary spastic paraplegias accompanied by mild or no intellectual disability. Physiological functions of TMEM63 proteins clearly recognized so far include detecting food grittiness and environmental humidity in Drosophila, and supporting hearing in mice by regulating survival of cochlear hair cells. In this review, we summarize current knowledge about the activation mechanisms and biological functions of TMEM63 channels, and provide a concise reference for researchers interested in investigating more physiological and pathogenic roles of this family of proteins with ubiquitous expression in the body.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
18
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
19
|
Liao L, Deng L, Zhang Y, Yang S, Andriani L, Hu S, Zhang F, Shao Z, Li D. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple-negative breast cancer. Clin Transl Med 2023; 13:e1480. [PMID: 38009308 PMCID: PMC10679971 DOI: 10.1002/ctm2.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents the most challenging subtype of all breast cancers because of its aggressive clinical phenotypes and absence of viable therapy targets. In order to identify effective molecular targets for treating patients with TNBC, we conducted an integration analysis of our recently published TNBC dataset of quantitative proteomics and RNA-Sequencing, and found the abnormal upregulation of chromosome 9 open reading frame 142 (C9orf142) in TNBC. However, the functional roles of C9orf142 in TNBC are unclear. METHODS In vitro and in vivo functional experiments were performed to assess potential roles of C9orf142 in TNBC. Immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescent staining were used to investigate the expression levels of C9orf142 and its downstream molecules. The molecular mechanisms underlying C9orf142-regulated mouse double minute 2 (MDM2)-binding protein (MTBP) were determined by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS In TNBC tissues and metastatic lymph nodes, we observed that C9orf142 exhibited abnormal up-regulation, and its elevated expression was indicative of unfavorable prognosis for TNBC patients. Both in vitro and in vivo functional experiments demonstrated that C9orf142 accelerated TNBC growth and metastasis. Further mechanism exploration revealed that C9orf142 transcriptionally activated MTBP, thereby regulating its downstream MDM2/p53/p21 signaling axis and the transition of cell cycle from G1 to S phase. Functional rescue experiment demonstrated that knockdown of MTBP attenuated C9orf142-mediated tumour growth and metastasis. Furthermore, depletion of C9orf142 remarkably increased the responsiveness of TNBC cells to CDK4/6 inhibitor abemaciclib. CONCLUSIONS Together, these findings unveil a previously unrecognized effect of C9orf142 in TNBC progression and responsiveness to CDK4/6 inhibitor, and emphasize C9orf142 as a promising intervention target for TNBC treatment.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yin‐Ling Zhang
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shao‐Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Shu‐Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhi‐Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
21
|
曹 丹, 蔡 娟, 李 艳, 董 润, 王 智, 左 学. [TMEM64 is highly expressed in hepatocellular carcinoma and promotes tumor cell proliferation and invasion]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1345-1355. [PMID: 37712271 PMCID: PMC10505578 DOI: 10.12122/j.issn.1673-4254.2023.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To analyze the expression of TMEM64 in hepatocellular carcinoma (HCC) and investigate the effect of TMEM64 expression level on proliferation and invasion of HCC cells in vitro. METHODS We analyzed the expression level of TMEM64 in HCC and adjacent tissues based on data from TCGA and GTEx databases. The prognostic value of TMEM64 for HCC patients was examined using Kaplan-Meier survival analysis and a Cox regression model, and a nomogram was constructed based on TMEM64 expression and clinical characteristics of the patients. Functional enrichment analysis was performed to explore the potential signaling pathways, and immune cell infiltration was assessed using single sample gene set enrichment analysis. We also performed cell experiment to observe the changes in proliferation, migration, and invasion in HCCLM3 cells with TMEM64 knockdown and in Huh7 cells with TMEM64 overexpression using CCK-8, EdU, colony formation, Transwell, and wound healing assays. RESULTS The expression level of TMEM64 was significantly higher in HCC than in the adjacent tissues (P < 0.05). Kaplan-Meier analysis suggested that a high expression of TMEM64 was associated with poor outcomes of the patients (P < 0.05). Multivariate Cox regression analysis indicated that a high TMEM64 expression was an independent risk factor for overall survival of HCC patients (P < 0.05). TMEM64 expression level was negatively correlated with the levels of immune cell infiltration by NK cells, CD8 + T cells, and plasma pDCs cells (P < 0.05). GO, KEGG, and GSEA enrichment analyses showed that TMEM64 was significantly enriched with tumor invasion and metastasis pathways. The nomogram and calibration curves indicated a moderate prediction reliability of the model. In the cell experiment, TMEM64 knockdown obviously suppressed and TMEM64 overexpression markedly promoted the proliferation, migration, and invasion of HCC cells (P < 0.01). CONCLUSION A high TMEM64 expression may serve as an independent risk factor for poor prognosis of HCC and promotes proliferation, migration, and invasion of HCC cells in vitro.
Collapse
Affiliation(s)
- 丹萍 曹
- 皖南医学院第一附属医院//弋矶山医院胃肠外科,安徽 芜湖 241001Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| | - 娟 蔡
- 皖南医学院第一附属医院//弋矶山医院肿瘤内科,安徽 芜湖 241001Department of Oncology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| | - 艳娜 李
- 皖南医学院第一附属医院//弋矶山医院胃肠外科,安徽 芜湖 241001Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| | - 润雨 董
- 皖南医学院第一附属医院//弋矶山医院胃肠外科,安徽 芜湖 241001Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| | - 智雄 王
- 皖南医学院第一附属医院//弋矶山医院胃肠外科,安徽 芜湖 241001Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| | - 学良 左
- 皖南医学院第一附属医院//弋矶山医院胃肠外科,安徽 芜湖 241001Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241001, China
| |
Collapse
|
22
|
Chen T, Wang L, Chen C, Li R, Zhu N, Liu R, Niu Y, Xiao Z, Liu H, Liu Q, Tu K. HIF-1α-activated TMEM237 promotes hepatocellular carcinoma progression via the NPHP1/Pyk2/ERK pathway. Cell Mol Life Sci 2023; 80:120. [PMID: 37041420 PMCID: PMC11072547 DOI: 10.1007/s00018-023-04767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Hypoxia-inducible factors (HIFs) are the most essential endogenous transcription factors in the hypoxic microenvironment and regulate multiple genes involved in the proliferation, migration, invasion, and EMT of hepatocellular carcinoma (HCC) cells. However, the regulatory mechanism of HIFs in driving HCC progression remains poorly understood. METHODS Gain- and loss-of-function experiments were carried out to investigate the role of TMEM237 in vitro and in vivo. The molecular mechanisms involved in HIF-1α-induced TMEM237 expression and TMEM237-mediated enhancement of HCC progression were confirmed by luciferase reporter, ChIP, IP-MS and Co-IP assays. RESULTS TMEM237 was identified as a novel hypoxia-responsive gene in HCC. HIF-1α directly bound to the promoter of TMEM237 to transactivate its expression. The overexpression of TMEM237 was frequently detected in HCC and associated with poor clinical outcomes in patients. TMEM237 facilitated the proliferation, migration, invasion, and EMT of HCC cells and promoted tumor growth and metastasis in mice. TMEM237 interacted with NPHP1 and strengthened the interaction between NPHP1 and Pyk2 to trigger the phosphorylation of Pyk2 and ERK1/2, thereby contributing to HCC progression. The TMEM237/NPHP1 axis mediates hypoxia-induced activation of the Pyk2/ERK1/2 pathway in HCC cells. CONCLUSIONS Our study demonstrated that HIF-1α-activated TMEM237 interacted with NPHP1 to activate the Pyk2/ERK pathway, thereby promoting HCC progression.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Wang
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Chao Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Runtian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ning Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hui Liu
- Department of Medical Equipment, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
23
|
Liao L, Zhang YL, Deng L, Chen C, Ma XY, Andriani L, Yang SY, Hu SY, Zhang FL, Shao ZM, Li DQ. Protein Phosphatase 1 Subunit PPP1R14B Stabilizes STMN1 to Promote Progression and Paclitaxel Resistance in Triple-Negative Breast Cancer. Cancer Res 2023; 83:471-484. [PMID: 36484700 PMCID: PMC9896024 DOI: 10.1158/0008-5472.can-22-2709] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) represents the most lethal subtype of breast cancer due to its aggressive clinical features and the lack of effective therapeutic targets. To identify novel approaches for targeting TNBC, we examined the role of protein phosphatases in TNBC progression and chemoresistance. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B), a poorly defined member of the protein phosphatase 1 regulatory subunits, was aberrantly upregulated in TNBC tissues and predicted poor prognosis. PPP1R14B was degraded mainly through the ubiquitin-proteasome pathway. RPS27A recruited deubiquitinase USP9X to deubiquitinate and stabilize PPP1R14B, resulting in overexpression of PPP1R14B in TNBC tissues. Gain- and loss-of-function assays demonstrated that PPP1R14B promoted TNBC cell proliferation, colony formation, migration, invasion, and resistance to paclitaxel in vitro. PPP1R14B also induced xenograft tumor growth, lung metastasis, and paclitaxel resistance in vivo. Mechanistic investigations revealed that PPP1R14B maintained phosphorylation and stability of oncoprotein stathmin 1 (STMN1), a microtubule-destabilizing phosphoprotein critically involved in cancer progression and paclitaxel resistance, which was dependent on PP1 catalytic subunits α and γ. Importantly, the tumor-suppressive effects of PPP1R14B deficiency could be partially rescued by ectopic expression of wild-type but not phosphorylation-deficient STMN1. Moreover, PPP1R14B decreased STMN1-mediated α-tubulin acetylation, microtubule stability, and promoted cell-cycle progression, leading to resistance of TNBC cells to paclitaxel. Collectively, these findings uncover a functional and mechanistic role of PPP1R14B in TNBC progression and paclitaxel resistance, indicating PPP1R14B is a potential therapeutic target for TNBC. SIGNIFICANCE PPP1R14B upregulation induced by RPS27A/USP9X in TNBC increases STMN1 activity, leading to cancer progression and paclitaxel resistance.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin-Ling Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| |
Collapse
|
24
|
Wu W, Liu S, Tian L, Li C, Jiang Y, Wang J, Lv Y, Guo J, Xing D, Zhai Y, Sun H, Li Y, Zhang L, He X, Luo K, Zhan H, Zhao Z. Identification of microtubule-associated biomarkers in diffuse large B-cell lymphoma and prognosis prediction. Front Genet 2023; 13:1092678. [PMID: 36761693 PMCID: PMC9902697 DOI: 10.3389/fgene.2022.1092678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease with a complicated prognosis. Even though various prognostic evaluations have been applied currently, they usually only use the clinical factors that overlook the molecular underlying DLBCL progression. Therefore, more accurate prognostic assessment needs further exploration. In the present study, we constructed a novel prognostic model based on microtubule associated genes (MAGs). Methods: A total of 33 normal controls and 1360 DLBCL samples containing gene-expression from the Gene Expression Omnibus (GEO) database were included. Subsequently, the univariate Cox, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis were used to select the best prognosis related genes into the MAGs model. To validate the model, Kaplan-Meier curve, and nomogram were analyzed. Results: A risk score model based on fourteen candidate MAGs (CCDC78, CD300LG, CTAG2, DYNLL2, MAPKAPK2, MREG, NME8, PGK2, RALBP1, SIGLEC1, SLC1A1, SLC39A12, TMEM63A, and WRAP73) was established. The K-M curve presented that the high-risk patients had a significantly inferior overall survival (OS) time compared to low-risk patients in training and validation datasets. Furthermore, knocking-out TMEM63A, a key gene belonging to the MAGs model, inhibited cell proliferation noticeably. Conclusion: The novel MAGs prognostic model has a well predictive capability, which may as a supplement for the current assessments. Furthermore, candidate TMEM63A gene has therapeutic target potentially in DLBCL.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Su Liu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linyan Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Cheng Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Jiang
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine. Nankai University, Tianjin, China
| | - Jinhuan Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yangyang Lv
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jing Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Donghui Xing
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yixin Zhai
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Huimeng Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yuhang Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Luying Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Jinan, China
| | - Xiang He
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kaiping Luo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Hongjie Zhan
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Jinan, China,*Correspondence: Hongjie Zhan, ; Zhigang Zhao,
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine. Nankai University, Tianjin, China,*Correspondence: Hongjie Zhan, ; Zhigang Zhao,
| |
Collapse
|
25
|
Kowalewski A, Jaworski D, Borowczak J, Maniewski M, Szczerbowski K, Antosik P, Durślewicz J, Smolińska M, Ligmanowska J, Grzanka D, Szylberg Ł. TOLLIP Protein Expression Predicts Unfavorable Outcome in Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232314702. [PMID: 36499030 PMCID: PMC9741407 DOI: 10.3390/ijms232314702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Resistance to systemic therapy is one of the hallmarks of renal cell carcinoma (RCC). Recently, TOLLIP has emerged as a possible driver of autophagy and chemoresistance. We explored the relationship between primary and metastatic RCC tumor characteristics, patient survival, and TOLLIP expression. The tissue microarrays cohort contained 95 cores of the primary tumor, matched metastases, and matched adjacent tissues derived from 32 RCC patients. TOLLIP expression in tumor samples was evaluated using the H-score. All examined samples showed cytoplasmic TOLLIP expression, with a median value of 100 in primary tumors, 107.5 in metastases, and 220 in the control group. The expression was significantly higher in the normal adjacent tissues compared to primary or metastatic RCC (p < 0.05). We found a positive correlation between expressions of TOLLIP in the primary tumor and its metastases (p < 0.05; k = 0.48). TOLLIP expression significantly correlates with a lower overall survival rate (p = 0.047). TOLLIP functions as a ubiquitin-LC3 adaptor in the intracellular pathway associated with autophagy. Relative TOLLIP overexpression may augment autophagy-related signaling, limiting susceptibility to therapy. The blockade of TOLLIP physiological function seems to be a promising approach to overcoming resistance to systemic therapy.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-5854200; Fax: +48-52-5854049
| | - Damian Jaworski
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Krzysztof Szczerbowski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Marta Smolińska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| |
Collapse
|