1
|
Tan L, Fan Y, Xu X, Zhang T, Cao X, Zhang C, Liang J, Hou Y, Dou H. WIF-1 contributes to lupus-induced neuropsychological deficits via the CRYAB/STAT4-SHH axis. Arthritis Res Ther 2024; 26:183. [PMID: 39444000 PMCID: PMC11515771 DOI: 10.1186/s13075-024-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) often manifests as cognitive deterioration, with activated microglia and blood-brain barrier (BBB) disruption implicated in these neurological complications. Wnt-inhibitory factor-1 (WIF-1), a secreted protein, has been detected in the cerebrospinal fluid (CSF) of NPSLE patients. However, the contribution of WIF-1 in contributing to lupus cognitive impairment remains poorly understood. METHODS Using MRL/MpJ-Faslpr (MRL/lpr) lupus-prone mice and TLR7 agonist imiquimod (IMQ)-induced lupus mice, recombinant WIF-1 protein (rWIF-1) and adeno-associated virus (AAV) encoding sh-WIF-1 were administered via intracerebroventricular injection. Behavioral tests, histopathological examinations, flow cytometry, and molecular biology techniques were employed to investigate the underlying mechanisms. RESULTS Microinjection of rWIF-1 exacerbated cognitive deficits and mood abnormalities, increased BBB leakage and neuronal degeneration, and caused aberrant activation of microglia and synaptic pruning in the hippocampus. Conversely, lupus mice injected with AAV-shWIF-1 exhibited significant remission. In vitro, rWIF-1 induced overactivation of microglia with an increased CD86+ pro-inflammatory subpopulation, upregulated phagocytic activity, and excessive synaptic engulfment, contributing to increased BBB permeability. Furthermore, WIF-1 exerted its biological effects through the CRYAB/STAT4 pathway, transcriptionally decreasing SHH production. We also identified that symmetric dimethylarginine (SDMA) could alleviate rWIF-1-induced microglial activation and BBB damage, thereby restoring SHH levels. CONCLUSIONS In conclusion, WIF-1 exacerbates lupus-induced cognitive dysfunction in mice by triggering aberrant microglial activation and BBB disruption through the CRYAB/STAT4-SHH axis, highlighting the potential therapeutic effects of SDMA for the treatment of NPSLE.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Yu Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xinyi Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tianshu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xiangyu Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Chenghao Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| |
Collapse
|
2
|
Wu ZY, Luo YF, Lu YP, Zhang YX, Han F. Targeting Brain Endothelial Gasdermin D: A Shortcut to Remodel the Blood-Brain Barrier. Neurosci Bull 2024:10.1007/s12264-024-01300-4. [PMID: 39276179 DOI: 10.1007/s12264-024-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/20/2024] [Indexed: 09/16/2024] Open
Affiliation(s)
- Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Targets of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yi-Fan Luo
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Targets of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Targets of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Targets of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Targets of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
3
|
Wang QL, Xu HY, Wang Y, Wang YL, Lin PN, Chen ZL. Clinical study of chemotherapy-related cognitive impairment in patients with non-Hodgkin lymphoma. World J Psychiatry 2024; 14:1062-1067. [PMID: 39050197 PMCID: PMC11262929 DOI: 10.5498/wjp.v14.i7.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Chemotherapy for malignant tumors can cause brain changes and cognitive impairment, leading to chemotherapy-induced cognitive impairment (CICI). Current research on CICI has focused on breast cancer and Hodgkin's lymphoma. Whether patients with non-Hodgkin's lymphoma (NHL) undergoing chemotherapy have cognitive impairment has not been fully investigated. AIM To investigate whether NHL patients undergoing chemotherapy had cognitive impairments. METHODS The study included 100 NHL patients who were required to complete a comprehensive psychological scale including the Brief Psychiatric Examination Scale (MMSE) at two time points: before chemotherapy and within 2 wk of two chemotherapy courses. A language proficiency test (VFT), Symbol Number Pattern Test (SDMT), Clock Drawing Test (CDT), Abbreviated Daily Cognition Scale (ECog-12), Prospective and Retrospective Memory Questionnaire, and Karnofsky Performance Status were used to assess cognitive changes before and after chemotherapy. RESULTS The VFT scores for before treatment (BT) and after treatment (AT) groups were 45.20 ± 15.62, and 42.30 ± 17.53, respectively (t -2.16, P < 0.05). The CDT scores were 8 (3.5-9.25) for BT and 7 (2.5-9) for AT groups (Z -2.1, P < 0.05). Retrospective memory scores were 13.5 (9-17) for BT and 15 (13-18) for AT (Z -3.7, P < 0.01). The prospective memory scores were 12.63 ± 3.61 for BT and 14.43 ± 4.32 for AT groups (t -4.97, P < 0.01). The ECog-12 scores were 1.71 (1.25-2.08) for BT and 1.79 (1.42-2.08) for AT groups (Z -2.84, P < 0.01). The SDMT and MMSE values did not show a significant difference between BT and AT groups. CONCLUSION Compared to the AT group, the BT group showed impaired language, memory, and subjective cognition, but objective cognition and execution were not significantly affected.
Collapse
Affiliation(s)
- Qiang-Li Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| | - Hai-Yan Xu
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| | - Yi Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| | - Yin-Ling Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| | - Pei-Nan Lin
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| | - Zhong-Lei Chen
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
4
|
Meng L, Yang J, Gao Y, Cao Q, Jiang S, Xiao Y, Wang H, Liu W, Yuan A, Li Y, Huang H. Biomimetic Nanomedicine Targeting Orchestrated Metabolism Coupled with Regulatory Factors to Disrupt the Metabolic Plasticity of Breast Cancer. ACS NANO 2024; 18:4360-4375. [PMID: 38277483 DOI: 10.1021/acsnano.3c10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Targeting nutrient metabolism has been proposed as an effective therapeutic strategy to combat breast cancer because of its high nutrient requirements. However, metabolic plasticity enables breast cancer cells to survive under unfavorable starvation conditions. The key mammalian target regulators rapamycin (mTOR) and hypoxia-inducible-factor-1 (HIF-1) tightly link the dynamic metabolism of glutamine and glucose to maintain nutrient flux. Blocking nutrient flow also induces autophagy to recycle nutrients in the autophagosome, which exacerbates metastasis and tumor progression. Compared to other common cancers, breast cancer is even more dependent on mTOR and HIF-1 to orchestrate the metabolic network. Therefore, we develop a cascade-boosting integrated nanomedicine to reprogram complementary metabolism coupled with regulators in breast cancer. Glucose oxidase efficiently consumes glucose, while the delivery of rapamycin inside limits the metabolic flux of glutamine and uncouples the feedback regulation of mTOR and HIF-1. The hydroxyl radical generated in a cascade blocks the later phase of autophagy without nutrient recycling. This nanomedicine targeting orchestrated metabolism can disrupt the coordination of glucose, amino acids, nucleotides, lipids, and other metabolic pathways in breast cancer tissues, effectively improving the durable antitumor effect and prognosis of breast cancer. Overall, the cascade-boosting integrated system provides a viable strategy to address cellular plasticity and efficient enzyme delivery.
Collapse
Affiliation(s)
- Lingtong Meng
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jingpeng Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shunjie Jiang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Haoran Wang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ahu Yuan
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
5
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
6
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|