1
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
2
|
Wang JQ, Li Q, He JY, Zhou F, Huang ZH, Wang LB, Zhang Y, Li X. Autophagy in Multiple Sclerosis: Phagocytosis and Autophagy of Oligodendrocyte Precursor Cells. Mol Neurobiol 2024; 61:6920-6933. [PMID: 38363533 DOI: 10.1007/s12035-024-03996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological dysfunction in young to middle-aged adults, affecting approximately 2.5 million people worldwide. It is characterized by inflammation, multifocal demyelination, axonal loss, and white and gray matter gliosis. Autophagy is a highly conserved protein degradation pathway. Polymorphisms in autophagy-related genes have been implicated in a variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, psoriasis and MS. However, the significance of autophagy in MS remains to be elucidated. This paper aims to explore the potential role of autophagy-related genes in MS diseases by using bioinformatics combined with machine learning methods. Finally, we obtained 9 autophagy genes with the highest correlation with MS, and further changes in these autophagy genes were verified in the experimental autoimmune encephalomyelitis (EAE) model and oligodendrocyte precursor cells (OPCs) engulfed myelin debris (MD). Combined with bioinformatic analysis and experimental data, Becn1 showed obvious expression abnormalities suggesting that this gene has vital functions in autophagy and MD engulfed by OPCs. This work will be of great significance for the further exploration of autophagy-related genes in demyelinating diseases.
Collapse
Affiliation(s)
- Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiang Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jia-Yi He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fang Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zi-Hao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Bin Wang
- The Nervous System Disease Diagnosis and Treatment Engineering Technology Research Center of Ningxia, Yinchuan, 750001, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Khawagi WY, Al-Kuraishy HM, Hussein NR, Al-Gareeb AI, Atef E, Elhussieny O, Alexiou A, Papadakis M, Jabir MS, Alshehri AA, Saad HM, Batiha GES. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes Metab 2024; 26:3031-3044. [PMID: 38802993 DOI: 10.1111/dom.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.
Collapse
Affiliation(s)
- Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Nawar R Hussein
- College of Pharmacy, Pharmacology Department, Al-Farahidi University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Esraa Atef
- Respiratory Therapy Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University Chandigarh-Ludhiana Highway, Mohali, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Majid S Jabir
- Applied Science Department, University of Technology, Baghdad, Iraq
| | - Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Al-Kuraishy HM, Sulaiman GM, Jabir MS, Mohammed HA, Al-Gareeb AI, Albukhaty S, Klionsky DJ, Abomughaid MM. Defective autophagy and autophagy activators in myasthenia gravis: a rare entity and unusual scenario. Autophagy 2024; 20:1473-1482. [PMID: 38346408 PMCID: PMC11210922 DOI: 10.1080/15548627.2024.2315893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
| | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
5
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024:1-12. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
7
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
8
|
Bai I, Keyser C, Zhang Z, Rosolia B, Hwang JY, Zukin RS, Yan J. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 2024; 15:1322842. [PMID: 38455054 PMCID: PMC10918468 DOI: 10.3389/fimmu.2024.1322842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.
Collapse
Affiliation(s)
- Isaac Bai
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Cameron Keyser
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Ziyan Zhang
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Breandan Rosolia
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
9
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM, Batiha GES. Evaluation and targeting of amyloid precursor protein (APP)/amyloid beta (Aβ) axis in amyloidogenic and non-amyloidogenic pathways: A time outside the tunnel. Ageing Res Rev 2023; 92:102119. [PMID: 37931848 DOI: 10.1016/j.arr.2023.102119] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In Alzheimer disease (AD), amyloid precursor protein (APP) and production of amyloid beta (Aβ) which is generated by amyloidogenic pathway is implicated in neurotoxicity and neuronal cell deaths. However, physiological Aβ level is essential to improves neuronal survival, attenuates neuronal apoptosis and has neuroprotective effect. In addition, physiological APP level has neurotrophic effect on the central nervous system (CNS). APP has a critical role in the brain growth and development via activation of long-term potentiation (LTP) and acceleration of neurite outgrowth. Moreover, APP is cleaved by α secretase to form a neuroprotective soluble APP alpha (sAPPα) in non-amyloidogenic pathway. Consequently, this mini-review purposes to highlight the possible beneficial role of APP and Aβ. In addition, this mini-review discussed the modulation of APP processing and Aβ production.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
10
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Rafeeq MF. The link between metabolic syndrome and Alzheimer disease: A mutual relationship and long rigorous investigation. Ageing Res Rev 2023; 91:102084. [PMID: 37802319 DOI: 10.1016/j.arr.2023.102084] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
It has been illustrated that metabolic syndrome (MetS) is associated with Alzheimer disease (AD) neuropathology. Components of MetS including central obesity, hypertension, insulin resistance (IR), and dyslipidemia adversely affect the pathogenesis of AD by different mechanisms including activation of renin-angiotensin system (RAS), inflammatory signaling pathways, neuroinflammation, brain IR, mitochondrial dysfunction, and oxidative stress. MetS exacerbates AD neuropathology, and targeting of molecular pathways in MetS by pharmacological approach could a novel therapeutic strategy in the management of AD in high risk group. However, the underlying mechanisms of these pathways in AD neuropathology are not completely clarified. Therefore, this review aims to elucidate the association between MetS and AD regarding the oxidative and inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|