1
|
Davis AE, Kennelley GE, Amaye-Obu T, Jowdy PF, Ghadersohi S, Nasir-Moin M, Paragh G, Berman HA, Huss WJ. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 19:100221. [PMID: 38389933 PMCID: PMC10883358 DOI: 10.1016/j.jpap.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.
Collapse
Affiliation(s)
- Anna E Davis
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gabrielle E Kennelley
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Tatiana Amaye-Obu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peter F Jowdy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Ghadersohi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mehr Nasir-Moin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Harvey A Berman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Romanell Center for the Philosophy of Medicine and Bioethics, Park Hall University at Buffalo, Buffalo, NY 14260, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
2
|
Kowalska J, Banach K, Rzepka Z, Rok J, Karkoszka M, Wrześniok D. Changes in the Oxidation-Reduction State of Human Dermal Fibroblasts as an Effect of Lomefloxacin Phototoxic Action. Cells 2022; 11:cells11121971. [PMID: 35741100 PMCID: PMC9222184 DOI: 10.3390/cells11121971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phototoxicity induced by antibiotics is a real problem in health care. The discontinuation of antibiotic therapy due to a phototoxic reaction can lead to the development of resistant strains. Fluoroquinolones are widely used antibiotics that exhibit phototoxic activity under UVA radiation. The purpose of the study was to examine the redox status of human dermal fibroblasts exposed to UVA radiation and treated with lomefloxacin, the most phototoxic fluoroquinolone. Lomefloxacin alone was found to have an antiproliferative activity on fibroblasts by affecting the cell cycle. In addition, the drug caused a redox imbalance associated with the decreased expression of catalase and glutathione peroxidase. UVA radiation increased the drug cytotoxicity and oxidative stress induced by lomefloxacin. The decrease in cell viability was accompanied by a high level of reactive oxygen species and extensive changes in the antioxidant levels. The revealed data indicate that the phototoxic action of lomefloxacin results from both increased reactive oxygen species production and an impaired antioxidant defense system. Considering all of the findings, it can be concluded that lomefloxacin-induced phototoxic reactions are caused by an oxidoreductive imbalance in skin cells.
Collapse
|
3
|
Kowalska J, Banach K, Beberok A, Rok J, Rzepka Z, Wrześniok D. The Biochemical and Molecular Analysis of Changes in Melanogenesis Induced by UVA-Activated Fluoroquinolones-In Vitro Study on Human Normal Melanocytes. Cells 2021; 10:cells10112900. [PMID: 34831123 PMCID: PMC8616096 DOI: 10.3390/cells10112900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells. The study aimed to examine the changes in melanogenesis in human normal melanocytes exposed to UVA radiation and treated with lomefloxacin and moxifloxacin, the most and the least fluoroquinolone, respectively. The obtained results demonstrated that both tested fluoroquinolones inhibited melanogenesis through a decrease in tyrosinase activity and down-regulation of tyrosinase and microphthalmia-associated transcription factor production. Only lomefloxacin potentiated UVA-induced melanogenesis. Under UVA irradiation lomefloxacin significantly enhanced melanin content and tyrosinase activity in melanocytes, although the drug did not cause an increased expression of tyrosinase or microphthalmia-associated transcription factor. The current studies revealed that phototoxic activity of fluoroquinolones is associated with alterations in the melanogenesis process. The difference in phototoxic potential of fluoroquinolones derivatives may be connected with various effects on UVA-induced events at a cellular level.
Collapse
|
4
|
The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicol In Vitro 2020; 66:104884. [DOI: 10.1016/j.tiv.2020.104884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
|
5
|
Jassem AM, Dhumad AM, Almashal FA, Alshawi JM. Microwave-assisted synthesis, molecular docking and anti-HIV activities of some drug-like quinolone derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02546-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Karunarathne WAHM, Molagoda IMN, Kim MS, Choi YH, Oren M, Park EK, Kim GY. Flumequine-Mediated Upregulation of p38 MAPK and JNK Results in Melanogenesis in B16F10 Cells and Zebrafish Larvae. Biomolecules 2019; 9:biom9100596. [PMID: 31614510 PMCID: PMC6843389 DOI: 10.3390/biom9100596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Flumequine is a well-known second generation quinolone antibiotic that induces phototoxicity. However, the effect of flumequine on skin melanogenesis is unclear. Therefore, we, for the first time, investigated whether flumequine regulates melanogenesis. The present study showed that flumequine slightly inhibited in vitro mushroom tyrosinase activity but significantly increased extracellular and intracellular melanin content in B16F10 cells and promoted the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. Additionally, flumequine remarkably increased melanin pigmentation in zebrafish larvae without any toxicity. We also found that flumequine stimulated p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation; inhibition of p38 MAPK and JNK resulted in significant downregulation of extracellular and intracellular melanin content in B16F10 cells and pigmentation of zebrafish larvae accompanied with suppression of MITF and tyrosinase expression, indicating that flumequine-mediated p38 and JNK promote melanogenesis in vitro and in vivo. According to the molecular docking prediction, flumequine targeted dual-specificity MAPK phosphatase 16 (DUSP16), which is a major negative regulator of p38 MAPK and JNK. Our findings demonstrate that flumequine induces an increase in melanin content in B16F10 cells and zebrafish larvae by activating p38 MAPK and JNK. These data show the potential of flumequine for use as an anti-vitiligo agent.
Collapse
Affiliation(s)
| | | | - Myung Sook Kim
- Department of Biology, Jeju National University, Jeju 63243, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Korea.
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Science Park, Ariel 40700, Israel.
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
7
|
Beberok A, Rzepka Z, Respondek M, Rok J, Stradowski M, Wrześniok D. Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular level. Toxicol In Vitro 2019; 55:75-92. [DOI: 10.1016/j.tiv.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022]
|
8
|
Ibbotson S. Drug and chemical induced photosensitivity from a clinical perspective. Photochem Photobiol Sci 2018; 17:1885-1903. [PMID: 30283959 DOI: 10.1039/c8pp00011e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drug photosensitivity is a relatively common occurrence and a range of mechanisms may be involved. Some of these mechanisms will be discussed, including the most common, that of drug phototoxicity. Different types of photosensitivity are addressed with respect to clinical presentation, mechanisms and additionally the contribution to our understanding through clinically directed investigations and regulatory requirements. Repeated controlled therapeutic use of drug phototoxicity, with psoralen-UVA (PUVA) photochemotherapy and photodynamic therapy (PDT) will also be discussed. Finally, the potential for drug-induced photocarcinogenesis will also be covered.
Collapse
Affiliation(s)
- Sally Ibbotson
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| |
Collapse
|
9
|
Rzepka Z, Respondek M, Rok J, Beberok A, Ó Proinsias K, Gryko D, Wrześniok D. Vitamin B 12 Deficiency Induces Imbalance in Melanocytes Homeostasis-A Cellular Basis of Hypocobalaminemia Pigmentary Manifestations. Int J Mol Sci 2018; 19:ijms19092845. [PMID: 30235895 PMCID: PMC6163934 DOI: 10.3390/ijms19092845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
Vitamin B12 deficiency causes significant changes in cellular metabolism leading to various clinical symptoms, such as hematological, psychiatric, and neurological disorders. We hypothesize that skin pigmentation disorders may be a diagnostically important manifestation of vitamin B12 deficiency, however the cellular and molecular mechanisms underlying these effects remain unknown. The aim of this study was to examine the effect of vitamin B12 deficiency on melanocytes homeostasis. Hypocobalaminemia in vitro model was developed by treating epidermal melanocytes with synthesized vitamin B12 antagonist—hydroxycobalamin(c-lactam). The cells were examined using immunoenzymatic, spectrophotometric, and fluorimetric assays as well as image cytometry. Significant melanogenesis stimulation—the increase of relative melanin content and tyrosinase activity up to 131% and 135%, respectively—has been indicated. Cobalamin-deficient cells displayed the elevation (by 120%) in reactive oxygen species level. Moreover, the redox status imbalance was stated. The study provided a scientific evidence for melanocytes homeostasis disturbance under hypocobalaminemia, thus indicating a significant element of the hyperpigmentation mechanism due to vitamin B12 deficiency. Furthermore, the implication between pigmentary and hematological and/or neuropsychiatric symptoms in cobalamin-deficient patients may be an important issue.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Keith Ó Proinsias
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
10
|
Beberok A, Rzepka Z, Respondek M, Rok J, Sierotowicz D, Wrześniok D. GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by fluoroquinolones. Eur J Pharmacol 2018; 835:94-107. [PMID: 30086267 DOI: 10.1016/j.ejphar.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Fluoroquinolones are a known synthetic group of antibiotics that have been the subject of many research interests. This class of antibiotics was shown to be cytotoxic towards various cancer cell lines, thus representing a potentially important source of new anticancer agents. The present study was designed to examine the effect of ciprofloxacin and moxifloxacin on cell viability, redox balance and apoptosis in U87MG glioblastoma cells. Herein, we found that both fluoroquinolones decrease the viability and exert an anti-proliferative effect on U87MG cells. The EC50 values were found to be as 0.75 µmol/ml, 0.57 µmol/ml, 0.53 µmol/ml for ciprofloxacin and 24, 48, 72 h incubation time, respectively, and 0.48 µmol/ml, 0.22 µmol/ml, 0.15 µmol/ml for moxifloxacin and 24, 48, 72 h incubation time, respectively. Ciprofloxacin and moxifloxacin have also induced the intracellular GSH depletion and apoptosis as shown by externalization of phosphatidylserine, caspase-3/7 activation, S and sub-G1 cell cycle arrest, nuclear morphological changes induction and DNA fragmentation. The mechanism of apoptosis was related to the loss of mitochondrial membrane potential suggesting activation of the intrinsic mitochondrial pathway. This is the first study that may provide the basis for understanding potential cellular and molecular mechanism underlying ciprofloxacin and moxifloxacin cytotoxic and pro-apoptotic effect towards U87MG glioblastoma cells, suggesting that these fluoroquinolone derivatives may have value for the development as anti-glioma agents.
Collapse
Affiliation(s)
- Artur Beberok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Zuzanna Rzepka
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michalina Respondek
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Daniel Sierotowicz
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Pharmaceutical Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
11
|
Rok J, Wrześniok D, Beberok A, Otręba M, Delijewski M, Buszman E. Phototoxic effect of oxytetracycline on normal human melanocytes. Toxicol In Vitro 2017; 48:26-32. [PMID: 29248593 DOI: 10.1016/j.tiv.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocytes - highly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| |
Collapse
|