1
|
Stapleton F, Abad JC, Barabino S, Burnett A, Iyer G, Lekhanont K, Li T, Liu Y, Navas A, Obinwanne CJ, Qureshi R, Roshandel D, Sahin A, Shih K, Tichenor A, Jones L. TFOS lifestyle: Impact of societal challenges on the ocular surface. Ocul Surf 2023; 28:165-199. [PMID: 37062429 PMCID: PMC10102706 DOI: 10.1016/j.jtos.2023.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Societal factors associated with ocular surface diseases were mapped using a framework to characterize the relationship between the individual, their health and environment. The impact of the COVID-19 pandemic and mitigating factors on ocular surface diseases were considered in a systematic review. Age and sex effects were generally well-characterized for inflammatory, infectious, autoimmune and trauma-related conditions. Sex and gender, through biological, socio-economic, and cultural factors impact the prevalence and severity of disease, access to, and use of, care. Genetic factors, race, smoking and co-morbidities are generally well characterized, with interdependencies with geographical, employment and socioeconomic factors. Living and working conditions include employment, education, water and sanitation, poverty and socioeconomic class. Employment type and hobbies are associated with eye trauma and burns. Regional, global socio-economic, cultural and environmental conditions, include remoteness, geography, seasonality, availability of and access to services. Violence associated with war, acid attacks and domestic violence are associated with traumatic injuries. The impacts of conflict, pandemic and climate are exacerbated by decreased food security, access to health services and workers. Digital technology can impact diseases through physical and mental health effects and access to health information and services. The COVID-19 pandemic and related mitigating strategies are mostly associated with an increased risk of developing new or worsening existing ocular surface diseases. Societal factors impact the type and severity of ocular surface diseases, although there is considerable interdependence between factors. The overlay of the digital environment, natural disasters, conflict and the pandemic have modified access to services in some regions.
Collapse
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia.
| | - Juan Carlos Abad
- Department of Ophthalmology, Antioquia Ophthalmology Clinic-Clofan, Medellin, Antioquia, Colombia
| | - Stefano Barabino
- ASST Fatebenefratelli-Sacco, Ospedale L. Sacco-University of Milan, Milan, Italy
| | - Anthea Burnett
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| | - Geetha Iyer
- C. J. Shah Cornea Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Kaevalin Lekhanont
- Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tianjing Li
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Yang Liu
- Ophthalmology Department, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Alejandro Navas
- Conde de Valenciana, National Autonomous University of Mexico UNAM, Mexico City, Mexico
| | | | - Riaz Qureshi
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, İstanbul, Turkey
| | - Kendrick Shih
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anna Tichenor
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Galor A, Britten-Jones AC, Feng Y, Ferrari G, Goldblum D, Gupta PK, Merayo-Lloves J, Na KS, Naroo SA, Nichols KK, Rocha EM, Tong L, Wang MTM, Craig JP. TFOS Lifestyle: Impact of lifestyle challenges on the ocular surface. Ocul Surf 2023; 28:262-303. [PMID: 37054911 DOI: 10.1016/j.jtos.2023.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Many factors in the domains of mental, physical, and social health have been associated with various ocular surface diseases, with most of the focus centered on aspects of dry eye disease (DED). Regarding mental health factors, several cross-sectional studies have noted associations between depression and anxiety, and medications used to treat these disorders, and DED symptoms. Sleep disorders (both involving quality and quantity of sleep) have also been associated with DED symptoms. Under the domain of physical health, several factors have been linked to meibomian gland abnormalities, including obesity and face mask wear. Cross-sectional studies have also linked chronic pain conditions, specifically migraine, chronic pain syndrome and fibromyalgia, to DED, principally focusing on DED symptoms. A systematic review and meta-analysis reviewed available data and concluded that various chronic pain conditions increased the risk of DED (variably defined), with odds ratios ranging from 1.60 to 2.16. However, heterogeneity was noted, highlighting the need for additional studies examining the impact of chronic pain on DED signs and subtype (evaporative versus aqueous deficient). With respect to societal factors, tobacco use has been most closely linked to tear instability, cocaine to decreased corneal sensitivity, and alcohol to tear film disturbances and DED symptoms.
Collapse
Affiliation(s)
- Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Surgical Services, Miami Veterans Administration, Miami, FL, USA.
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Yun Feng
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Scientific Institute, Milan, Italy
| | - David Goldblum
- Pallas-Kliniken, Olten, Bern, Zurich, Switzerland; University of Basel, Basel, Switzerland
| | - Preeya K Gupta
- Triangle Eye Consultants, Raleigh, NC, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, USA
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernandez-Vega, Universidad de Oviedo, Principality of Asturias, Spain
| | - Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eduardo M Rocha
- Department of Ophthalmology, Othorynolaringology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Center, Ocular Surface Research Group, Singapore Eye Research Institute, Eye Academic Clinical Program, Duke-National University of Singapore, Singapore
| | - Michael T M Wang
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Ali A, Gupta PK. Change in Refractive Error Associated With the Use of Cannabidiol Oil. Cureus 2021; 13:e14434. [PMID: 33996300 PMCID: PMC8117258 DOI: 10.7759/cureus.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabinoid (CBD) products have gained popularity since their legalization in 2018, causing a plethora of unregulated CBD products to be sold in the United States. These products are available in various combinations for topical and oral consumption, claiming credit for potentially improving various diseases. In this report, we present a newfound case reporting a shift in refraction that may be associated with the regular use of CBD oil supplements. A 57-year-old woman with a history of diabetes mellitus type 2, hyperlipidemia, obstructive sleep apnea, with no change in medications, diet, or lifestyle was found to have a hyperopic shift in vision with the recent daily addition of CBD oil intake. This case report highlights the possible association of CBD oil and vision changes after regular consumption of CBD oil in an otherwise stable patient. Further study is required to understand the mechanisms of CBD oil-associated shift in refractive error. Because the patient is diabetic and the refraction shift was hyperopic, other etiologies, such as un-noted lenticular change, cannot be ruled out. CBD products are unregulated and marketed in many mixed forms, and thus can cause unforeseen effects on susceptible individuals. This warrants Food and Drug Administration (FDA) regulation of such products and extensive research before considering them for therapeutic usage.
Collapse
Affiliation(s)
- Amir Ali
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, USA
| | - Praveena K Gupta
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
4
|
CannabinEYEds: The Endocannabinoid System as a Regulator of the Ocular Surface Nociception, Inflammatory Response, Neovascularization and Wound Healing. J Clin Med 2020; 9:jcm9124036. [PMID: 33327429 PMCID: PMC7764860 DOI: 10.3390/jcm9124036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex regulatory system, highly conserved among vertebrates. It has been widely described in nearly all human tissues. In the conjunctiva and cornea, the ECS is believed to play a pivotal role in the modulation of the local inflammatory state as well as in the regulation of tissue repair and fibrosis, neo-angiogenesis and pain perception. This review aims to summarize all the available data on ECS expression and its function in ocular surface structures to provide a specific insight concerning its modulation in dry eye disease, and to propose directions for future research.
Collapse
|
5
|
Abstract
Cannabis ranks among the most commonly used psychotropic drugs worldwide. In the context of the global movement toward more widespread legalisation, there is a growing need toward developing a better understanding of the physiological and pathological effects. We provide an overview of the current evidence on the effects of cannabinoids on the eye. Of the identified cannabinoids, Δ9-tetrahydrocannabinol is recognized to be the primary psychotropic compound, and cannabidiol is the predominant nonpsychoactive ingredient. Despite demonstrating ocular hypotensive and neuroprotective activity, the use of cannabinoids as a treatment for glaucoma is limited by a large number of potential systemic and ophthalmic side effects. Anterior segment effects of cannabinoids are complex, with preliminary evidence showing decreased corneal endothelial density in chronic cannabinoid users. Experiments in rodents, however, have shown potential promise for the treatment of ocular surface injury via antinociceptive and antiinflammatory effects. Electroretinography studies demonstrating adverse effects on photoreceptor, bipolar, and ganglion cell function suggest links between cannabis and neuroretinal dysfunction. Neuro-ophthalmic associations include ocular motility deficits and decrements in smooth pursuit and saccadic eye movements, although potential therapeutic effects for congenital and acquired nystagmus have been observed.
Collapse
|
6
|
Abstract
Purpose: While cannabis has the potential to reduce corneal pain, cannabinoids might induce side effects. This review article examines the effects of cannabinoids on the cornea. As more states and countries consider the legalization of adult cannabis use, health-care providers will need to identify ocular effects of cannabis consumption.Methods: Studies included in this review examined the connection between cannabis and the cornea, more specifically anti-nociceptive and anti-inflammatory actions of cannabinoids. NCBI Databases from 1781 up to December 2019 were consulted.Results: Five studies examined corneal dysfunctions caused by cannabis consumption (opacification, decreased endothelial cell density). Twelve studies observed a reduction in corneal pain and inflammation (less lymphocytes, decreased corneal neovascularization, increased cell proliferation and migration).Conclusion: More than half of the studies examined the therapeutic effects of cannabinoids on the cornea. As the field is still young, more studies should be conducted to develop safe cannabinoid treatments for corneal diseases.
Collapse
Affiliation(s)
- Anne X Nguyen
- Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Moshirfar M, Murri MS, Shah TJ, Skanchy DF, Tuckfield JQ, Ronquillo YC, Birdsong OC, Hofstedt D, Hoopes PC. A Review of Corneal Endotheliitis and Endotheliopathy: Differential Diagnosis, Evaluation, and Treatment. Ophthalmol Ther 2019; 8:195-213. [PMID: 30859513 PMCID: PMC6514041 DOI: 10.1007/s40123-019-0169-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays an integral role in regulating corneal hydration and clarity. Endotheliitis, defined as inflammation of the corneal endothelium, may disrupt endothelial function and cause subsequent visual changes. Corneal endotheliitis is characterized by corneal edema, the presence of keratic precipitates, anterior chamber inflammation, and occasionally limbal injection, neovascularization, and co-existing or superimposed uveitis. The disorder is classified into four subgroups: linear, sectoral, disciform, and diffuse. Its etiology is extensive and, although commonly viral, may be medication-related, procedural, fungal, zoological, environmental, or systemic. Not all cases of endothelial dysfunction leading to corneal edema are inflammatory in nature. Therefore, it is imperative that practitioners consider a broad differential for patients presenting with possible endotheliitis, as well as familiarize themselves with appropriate diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Majid Moshirfar
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
- HDR Research Center, Hoopes Vision, Draper, UT, USA.
| | - Michael S Murri
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tirth J Shah
- Department of Ophthalmology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - David F Skanchy
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Q Tuckfield
- Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | | | - Daniel Hofstedt
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, USA
| | | |
Collapse
|
8
|
Comparison of corneal endothelial cell analysis in patients with uveitis and healthy subjects. Int Ophthalmol 2017; 39:287-294. [DOI: 10.1007/s10792-017-0809-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
|