1
|
Das B, Islam MA, Tamim U, Ahmed FT, Hossen MB. Heavy metal analysis of water and sediments of the Kaptai Lake in Bangladesh: Contamination and concomitant health risk assessment. Appl Radiat Isot 2024; 210:111358. [PMID: 38776733 DOI: 10.1016/j.apradiso.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
In this study, concentrations of 9 heavy metals (Cr, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb) in water and sediments of the Kaptai Lake were determined by neutron activation analysis and atomic absorption spectrometry techniques to study their distribution and contamination in the lake. Average concentrations of Cr and Co in sediments, and Fe and Pb in water were higher than those of some international guideline values. Different environmental pollution indexes (individual and synergistic) suggested that the sediments of Kaptai Lake are minorly enriched by As and Zn, and have low severity of contamination at most of the sampling sites. For residential receptors exposed to the heavy metals in lake water, both non-carcinogenic and carcinogenic hazards were assessed which indicated that there is no carcinogenic risk for As while Cr shows a slightly carcinogenic risk. Moreover, estimated potential ecological risks and different SQGs suggested low ecotoxicological risks in the sediments of Kaptai Lake. Multivariate statistical analyses revealed the correlation among the studied heavy metals and indicated that the origin of most of the metals is mainly lithogenic and a small number of metals (Cu and Pb) from anthropogenic sources. The results of this study will be helpful in developing a pollution control strategy for the lake.
Collapse
Affiliation(s)
- Biplob Das
- Department of Physics, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Mohammad Amirul Islam
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh.
| | - Umma Tamim
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh
| | - Farah Tasneem Ahmed
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka, 1349, Bangladesh
| | - Mohammad Belal Hossen
- Department of Physics, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| |
Collapse
|
2
|
Yüksel B, Ustaoğlu F, Aydın H, Tokatlı C, Topaldemir H, Islam MS, Muhammad S. Appraisal of metallic accumulation in the surface sediment of a fish breeding dam in Türkiye: A stochastical approach to ecotoxicological risk assessment. MARINE POLLUTION BULLETIN 2024; 203:116488. [PMID: 38759467 DOI: 10.1016/j.marpolbul.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
This study examines the levels and patterns of potentially toxic elements (PTEs) in surface sediment of Almus Dam Lake (ADL), a key fish breeding site in Türkiye. PTE concentrations in sediment were ranked: Hg (0.05 ± 0.01) < Cd (0.16 ± 0.01) < Pb (9.34 ± 1.42) < As (18.75 ± 15.65) < Cu (63.30 ± 15.17) < Ni (72.64 ± 20.54) < Zn (86.66 ± 11.95) < Cr (108.35 ± 36.40) < Mn (1008 ± 151) < Fe (53,998 ± 6468), with no significant seasonal or spatial differences. Ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) showed low contamination levels. Health risk assessments, including LCR, HQ, and THI, indicated minimal risks to humans from sediment PTEs. Statistical analyses (PCA, HCA, SCC) identified natural, transportation, and anthropogenic PTE sources, with slight impacts from agriculture and fish farming. This research underlines contamination status of ADL and emphasizes the need for targeted management strategies, offering critical insights for environmental safeguarding.
Collapse
Affiliation(s)
- Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye.
| | - Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Handan Aydın
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye
| | - Cem Tokatlı
- Trakya University, İpsala Vocational School, Department of Laboratory Technology, Evrenos Gazi Campus, Edirne, Türkiye
| | - Halim Topaldemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki Patuakhali 8602, Bangladesh
| | - Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
3
|
Marselina M, Wijaya M. Heavy metals in water and sediment of Cikijing River, Rancaekek District, West Java: Contamination distribution and ecological risk assessment. PLoS One 2024; 19:e0294642. [PMID: 38630745 PMCID: PMC11023565 DOI: 10.1371/journal.pone.0294642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/05/2023] [Indexed: 04/19/2024] Open
Abstract
The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.
Collapse
Affiliation(s)
- Mariana Marselina
- Environmental Engineering Study Program, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology Jl. West Java, Indonesia
| | - M. Wijaya
- Environmental Engineering Study Program, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology Jl. West Java, Indonesia
| |
Collapse
|
4
|
Aktar S, Islam ARMT, Mia MY, Jannat JN, Islam MS, Siddique MAB, Masud MAA, Idris AM, Pal SC, Senapathi V. Assessing metal(loid)s-Induced long-term spatiotemporal health risks in Coastal Regions, Bay of Bengal: A chemometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33141-z. [PMID: 38625466 DOI: 10.1007/s11356-024-33141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.
Collapse
Affiliation(s)
- Shammi Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| |
Collapse
|
5
|
Ali MM, Kubra K, Alam E, Mondol AH, Akhtar S, Islam MS, Karim E, Ahmed ASS, Siddique MAB, Malafaia G, Rahman MZ, Rahman MM, Islam ARMT. Bioaccumulation and sources of metal(loid)s in fish species from a subtropical river in Bangladesh: a public health concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2343-2359. [PMID: 38057678 DOI: 10.1007/s11356-023-31324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-E-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Khadijatul Kubra
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Edris Alam
- Faculty of Resilience, Rabdan Academy, 114646, Abu Dhabi, United Arab Emirates
| | - Anwar Hossain Mondol
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Shahrina Akhtar
- Krishi Gobeshona Foundation (KGF), BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute (BFRI), Mymensingh, 2201, Bangladesh
| | - A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, 75790 000, Brazil
| | - Md Zillur Rahman
- Quality Control Laboratory, Department of Fisheries, Khulna, 9000, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| |
Collapse
|
6
|
Islam MS, Islam MT, Antu UB, Saikat MSM, Ismail Z, Shahid S, Islam ARMT, Ali MM, Al Bakky A, Ahmed S, Ibrahim KA, Al-Qthanin RN, Idris AM. Contamination and ecological risk assessment of Cr, As, Cd and Pb in water and sediment of the southeastern Bay of Bengal coast in a developing country. MARINE POLLUTION BULLETIN 2023; 197:115720. [PMID: 37939519 DOI: 10.1016/j.marpolbul.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Safe levels of heavy metals in the surface water and sediment of the eastern Bay of Bengal coast have not been universally established. Current study characterized heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd) and lead (Pb) in surface water and sediments of the most important fishing resource at the eastern Bay of Bengal coast, Bangladesh. Both water and sediment samples were analyzed using inductively coupled plasma mass spectrometer. Considering both of the seasons, the mean concentrations of Cr, As, Cd, and Pb in water samples were 33.25, 8.14, 0.48, and 21.14 μg/L, respectively and in sediment were 30.47, 4.48, 0.20, and 19.98 mg/kg, respectively. Heavy metals concentration in water samples surpassed the acceptable limits of usable water quality, indicating that water from this water resource is not safe for drinking, cooking, bathing, and any other uses. Enrichment factors also directed minor enrichment of heavy metals in sediment of the coast. Other indexes for ecological risk assessment such as pollution load index (PLI), contamination factor (CF), geoaccumulation index (Igeo), modified contamination degree (mCd), and potential ecological risk index (PERI) also indicated that sediment of the coastal watershed was low contamination. In-depth inventorying of heavy metals in both water and sediment of the study area are required to determine ecosystem health for holistic risk assessment and management.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh.
| | - Md Towhidul Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Sadik Mahmud Saikat
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Shamsuddin Shahid
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Abdullah Al Bakky
- Agriculture Wing, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Sujat Ahmed
- Environment, Center for People & Environ (CPE), Dhaka 1207, Bangladesh
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
7
|
Kumari P, Hansdah P. Sources and toxicological effects of metal and metalloids on human health through fish consumption in mineral-rich city, Ranchi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1032. [PMID: 37561244 DOI: 10.1007/s10661-023-11639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Ranchi is the administrative capital of Jharkhand and is located in the southern part of the Chhotanagpur Plateau. It is rich in forest and mineral resources and hence is suitable for the establishment of many large- and small-scale industries. The estimated population of Ranchi for the year 2023 is 3.54 million. These demographic characteristics make the capital more vulnerable to environmental degradation. Also, previous water quality research focused on river, water, and oceans separately; however, little or no work has been carried out on the comparison of metal or metalloid analysis in rivers, waterfalls, and lakes. Hence, the present study aims to assess the pollution status of mineral-rich and industrial hub city, Ranchi, through analysis of metals or metalloids in abiotic (water and sediment) and biotic (fish and human) components. The water, sediment, and fish (Labeo rohita and Catla catla) samples were collected from Subarnarekha river, Jumar river, Dassam fall, Getalsud dam, Hundru fall, Jonha fall, Kanke dam, and Sita fall. Samples were collected following standard methods and analyzed in inductively coupled plasma mass spectrometry (ICP-MS). Among three aquatic systems (rivers, dams, and falls), dams were highly polluted with metals or metalloids, which may be due to effluent discharge from different industries. Additionally, the high population in the city also contributed to metals or metalloids pollution. The reason may be the direct sewage disposal and agricultural and surface runoff in the water systems. It was observed that most of the aquatic systems in Ranchi were severely polluted with metals or metalloids. The fish also accumulated these metals or metalloids in their body and can be life-threatening to the human population consuming them. The THQ (above 1) and HI (2.95) values for As showed that children are more vulnerable to health risk through consumption of contaminated fish. Hence, proper planning and management are needed to overcome the metals or metalloids pollution in Ranchi.
Collapse
Affiliation(s)
- Preeti Kumari
- Amity Institute of Applied Sciences, Amity University, Jharkhand, 834002, India.
- Department of Environmental Science and Engg., Indian Institute of Technology (ISM), Dhanbad, 826004, India.
| | - Puja Hansdah
- Department of Mining Engineering, Academy of Maritime Education and Training, Chennai, 603112, India
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| |
Collapse
|
8
|
Jannat JN, Mia MY, Jion MMMF, Islam MS, Ali MM, Siddique MAB, Rakib MRJ, Ibrahim SM, Pal SC, Costache R, Malafaia G, Islam ARMT. Pollution trends and ecological risks of heavy metal(loid)s in coastal zones of Bangladesh: A chemometric review. MARINE POLLUTION BULLETIN 2023; 191:114960. [PMID: 37119588 DOI: 10.1016/j.marpolbul.2023.114960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
Heavy metal(loid)s inputs contribute to human and environmental stresses in the coastal zones of Bangladesh. Several studies have been conducted on metal(loid)s pollution in sediment, soil, and water in the coastal zones. However, they are sporadic, and no attempt has been made in coastal zones from the standpoint of chemometric review. The current work aims to provide a chemometric assessment of the pollution trend of metal(loid)s, namely arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), and nickel (Ni) in sediments, soils, and water across the coastal zones from 2015 to 2022. The findings showed that 45.7, 15.2, and 39.1 % of studies on heavy metal(loid)s were concentrated in the eastern, central, and western zones of coastal Bangladesh. The obtained data were further modeled using chemometric approaches, such as the contamination factor, pollution load index, geoaccumulation index, degree of contamination, Nemerow's pollution index, and ecological risk index. The results revealed that metal(loid)s, primarily Cd, have severely polluted the sediments (contamination factor, CF = 5.20) and soils (CF = 9.35) of coastal regions. Water was moderately polluted (Nemerow's pollution index, PN=5.22 ± 6.26) in the coastal area. The eastern zone was the most polluted compared to other zones, except for a few observations in the central zone. The overall ecological risks posed by metal(loid)s highlighted the significant ecological risk in sediments (ecological risk index, RI = 123.50) and soils (RI = 238.93) along the eastern coast. The coastal zone may have higher pollution levels due to the proximity of industrial effluent, residential sewage discharge, agricultural activities, sea transport, metallurgical industries, shipbreaking and recycling operations, and seaport activities, which are the major sources of metal(loid)s. This study will provide useful information to the relevant authorities and serve as the foundation for future management and policy decisions to reduce metal(loid) pollution in the coastal zones of southern Bangladesh.
Collapse
Affiliation(s)
- Jannatun Nahar Jannat
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh
| | | | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Romulus Costache
- Department of Civil Engineering, Transilvania University of Brasov, 5, Turnului Str, 500152 Brasov, Romania; Danube Delta National Institute for Research and Development,165 Babadag Street, 820112 Tulcea, Romania.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
9
|
Mehnaz M, Jolly YN, Alam AKMR, Kabir J, Akter S, Mamun KM, Rahman A, Islam MM. Prediction of Hazardous Effect of Heavy Metals of Point-Source Wastewater on Fish (Anabas cobojius) and Human Health. Biol Trace Elem Res 2023; 201:3031-3049. [PMID: 35931926 DOI: 10.1007/s12011-022-03378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
Aquatic ecosystems are exceedingly contrived due to industrial dispenses, as a huge amount of toxicants especially heavy metals are released, causing drastic effects on aquatic lives and the human body. This study was performed to assess the quality of point-source industrial wastewater at varying percentage levels and their subsequent hazardous effect on fish (Anabas cobojius) and human health. The perceived value revealed that water quality parameters declined with the increase of wastewater concentration and trace metal evaluation index (TEI) ascertained a high level of water pollution due to Cr, Mn, Fe, Co, Ni, Cu, Zn, and As content for all percentages of wastewater. Concentration of wastewater and culture treatment duration largely impacted on fish mortality rate, body dis-pigmentation, mucus secretion rate, coagulation of mucus all over the body, and accumulation of heavy metals by fish samples. Metal pollution index (MPI) indicated low contamination of fish by the measured elements. Zn and Hg exceeded the threshold limit of target hazard quotient (THQ > 1) and contributed significantly to non-carcinogenic health implications for both the population group. Maximum hazard index in adults and children was observed to be 10.638 and 16.548 for 100% effluent at 96-h exposure period and the overall HI value manifested a very high to medium significant health effects regardless of age. Carcinogen Pb showed insignificant risk but Cr and Ni showed extremely high to medium-high risk for both the population group, and children were found more vulnerable receptors than adults. However, source of heavy metals in wastewater and fish samples stipulated anthropogenic sources.
Collapse
Affiliation(s)
- Maheen Mehnaz
- Department of Environmental Science, Bangladesh University of Professionals, Mirpur-12 Cantonment, Dhaka-1216, Bangladesh
| | - Yeasmin N Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh.
| | - A K M Rashidul Alam
- Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Jamiul Kabir
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Shirin Akter
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Khan M Mamun
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Arafat Rahman
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mahfuz Islam
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Apau J, Coffie DOT, Akoto O, Osei-Owusu J, Gyamfi O, Boateng GO. Seasonal Variation in Water Quality of River Subin in Kumasi. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Miah MH, Chand DS, Malhi GS. Selected river pollution in Bangladesh based on industrial growth and economic perspective: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:98. [PMID: 36369316 DOI: 10.1007/s10661-022-10663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The main goal of sustainable development is to engage the public in setting the groundwork for developing profiles based on carrying capacity assessments. Since industrial projects are located in traditional, non-industrial zones, the broad human resource development program includes environmental research, education, and training to build technical and practical skills in the country-based and scientific statistics system data gathering. It is noteworthy that the examinations were conducted sporadically and that the research did not correspond to the pollution level in Bangladesh's waterways. Therefore, it is essential to conduct a methodical examination that may offer a complete picture of river pollution so that appropriate preventative actions can be adopted to safeguard against pollution threats. Bangladesh has many environmental issues, including dirty air from various vehicles, unhealthy water, accumulating urban waste, untreated sewage, interior air pollution from wood smoke, and usage of fad-driven contemporary materials in homes. Each of them contributes more to the destruction of the environment. With the current trend of population growth followed by the construction of companies to suit their wants, such a situation may worsen. Hazardous gases, dust particles, or liquid effluents are the waste products emitted from industrial sources. These discharges are full of harmful chemicals that pollute aquatic ecosystems, disrupt the local biota, and eventually harm living things and associated flora and animals. As a result, studies were conducted, including the physicochemical characterization of sugar refineries, distilleries, and other rivers that receive such effluents. These characteristics of subsurface water were also taken into consideration throughout the inquiry. This research will be anticipated to offer proper preventive methods for preserving the purity of the Bangladeshi rivers.
Collapse
Affiliation(s)
- Md Helal Miah
- Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab-140413, India.
| | | | - Gurmail Singh Malhi
- Department of Aerospace Engineering, Chandigarh University, Mohali, Punjab-140413, India
| |
Collapse
|
12
|
Tokatli C, Titiz AM, Uğurluoğlu A, Islam MS, Ustaoğlu F, Islam ARMT. Assessment of the effects of COVID-19 lockdown period on groundwater quality of a significant rice land in an urban area of Türkiye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71752-71765. [PMID: 35604609 PMCID: PMC9126627 DOI: 10.1007/s11356-022-20959-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 05/25/2023]
Abstract
In the current research, the impact of the COVID-19 lockdown period on groundwater quality of Lower Meriç Plain (Thrace Region of Türkiye) was evaluated. Some significant nutrient characteristics (NO3-, NO2-, and PO43-), salinity characteristics (EC, TDS, and salinity), and physical characteristics (temperature, DO, pH, and turbidity) were investigated in groundwater samples collected from 45 sampling points in pre-lockdown and lockdown periods. Water quality index (WQI) and nutrient pollution index (NPI), Pearson correlation index (PCI), cluster analysis (CA), one-way ANOVA test (OWAT), and factor analysis (FA) were applied to assess ecological risk. Excluding recorded statistical differences in temperature and DO due to climatic conditions (p < 0.05), levels of all the investigated water quality parameters show no statistically significant differences and no significant reduction in pollutants measured in the lockdown period. On the contrary, the WQI and NPI scores have increased between the rates of 4.76-27.10% during the lockdown period. In the lockdown period, although the reduction of industry or limited production of many industrial facilities reduced the inorganic contaminant releases to the environment, ongoing agricultural activities and domestic wastes caused to prevent the reduction of organic pollutants in groundwater of the region during the lockdown period.
Collapse
Affiliation(s)
- Cem Tokatli
- Laboratory Technology Department, Trakya University, Edirne, Türkiye
| | - Ahmet Miraç Titiz
- Biotechnology and Genetics Department, Trakya University, Edirne, Türkiye
| | - Alper Uğurluoğlu
- General Directorate of Water Management, Republic of Türkiye Ministry of Agriculture and Forestry, Ankara, Türkiye
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh.
| | - Fikret Ustaoğlu
- Biology Department, Faculty of Science, Giresun University, Giresun, Türkiye
| | | |
Collapse
|
13
|
Rakib MRJ, Rahman MA, Onyena AP, Kumar R, Sarker A, Hossain MB, Islam ARMT, Islam MS, Rahman MM, Jolly YN, Idris AM, Ali MM, Bilal M, Sun X. A comprehensive review of heavy metal pollution in the coastal areas of Bangladesh: abundance, bioaccumulation, health implications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67532-67558. [PMID: 35921010 DOI: 10.1007/s11356-022-22122-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The coastal zone of Bangladesh, with a population density of 1278 people per square kilometer, is under serious threat due to heavy metal pollution. To date, many studies have been conducted on the heavy metal contamination in soils, water, aquatic animals, and plants in the coastal zone of Bangladesh; however, the available information is dispersed. In this study, previous findings on the contamination levels, distributions, risks, and sources of heavy metals in sediments and organisms were summarized for the first time to present the overall status of heavy metal pollution along coastal regions. Earlier research found that the concentrations of various heavy metals (HMs), particularly Co, Cd, Pb, Cu, Cr, Mn, Fe, and Ni in water, sediment, and fish in most coastal locations, were above their permissible limits. High concentrations of HMs were observed in sediments and water, like Cr of 55 mg/kg and 86.93 mg/l in the ship-breaking areas and Karnaphuli River, respectively, in coastal regions of Bangladesh. Heavy metals severely contaminated the Karnaphuli River estuary and ship-breaking area on the Sitakundu coast, where sediments were the ultimate sink of high concentrations of metals. Sedentary or bottom-dwelling organisms like gastropods and shrimp had higher levels of heavy metals than other organisms. As a result, the modified PRISMA review method was used to look at the critical research gap about heavy metal pollution in Bangladesh's coastal areas by analyzing the current research trends and bottlenecks.
Collapse
Affiliation(s)
- Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Md Asrafur Rahman
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Amarachi Paschaline Onyena
- Department of Marine Environment and Pollution Control, Nigeria Maritime University Okerenkoko, Warri, Delta State, Nigeria
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia
| | | | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Yeasmin Nahar Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Jolly YN, Rakib MRJ, Sakib MS, Shahadat MA, Rahman A, Akter S, Kabir J, Rahman MS, Begum BA, Rahman R, Sulieman A, Tamam N, Khandaker MU, Idris AM. Impact of Industrially Affected Soil on Humans: A Soil-Human and Soil-Plant-Human Exposure Assessment. TOXICS 2022; 10:toxics10070347. [PMID: 35878252 PMCID: PMC9318062 DOI: 10.3390/toxics10070347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal (HM) contaminated soil can affect human health via ingestion of foodstuffs, inhalation of soil dust, and skin contact of soil. This study estimates the level of some heavy metals in soils of industrial areas, and their exposures to human body via dietary intake of vegetables and other pathways. Mean concentrations of Cr, Fe, Cu, Zn, As and Pb in the studied soil were found to be 61.27, 27,274, 42.36, 9.77, 28.08 and 13.69 mg/kg, respectively, while in vegetables the respective values were 0.53, 119.59, 9.76, 7.14, 1.34 and 2.69 mg/kg. Multivariate statistical analysis revealed that Fe, Cu, Zn, and Pb originated from lithogenic sources, while Cr and As are derived from anthropogenic sources. A moderate enrichment was noted by Cr, As, and Pb in the entire sampling site, indicating a progressive depletion of soil quality. The bioaccumulation factor (BCF) value for all the vegetables was recorded as BCF < 1; however, the metal pollution index (MPI) stipulates moderately high value of heavy metal accumulation in the vegetable samples. Hazard Index (HI) of >0.1 was estimated for adults but >1 for children by direct soil exposure, whereas HI < 1 for both children and adults via dietary intake of vegetables. Estimated Total carcinogenic risk (TCR) value due to soil exposure showed safe for adults but unsafe for children, while both the population groups were found to be safe via food consumption. Children are found more vulnerable receptors than adults, and health risks (carcinogenic and non-carcinogenic) via direct soil exposure proved unsafe. Overall, this study can be used as a reference for similar types of studies to evaluate heavy metal contaminated soil impact on the population of Bangladesh and other countries as well.
Collapse
Affiliation(s)
- Yeasmin N. Jolly
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, P.O. Box 164, Dhaka 1000, Bangladesh; (S.A.); (J.K.); (M.S.R.); (B.A.B.)
- Correspondence: (Y.N.J.); (M.R.J.R.)
| | - Md. Refat Jahan Rakib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Correspondence: (Y.N.J.); (M.R.J.R.)
| | - M. Sadman Sakib
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.S.S.); (M.A.S.); (R.R.)
| | - M. Ashemus Shahadat
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.S.S.); (M.A.S.); (R.R.)
| | - Arafat Rahman
- Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Shirin Akter
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, P.O. Box 164, Dhaka 1000, Bangladesh; (S.A.); (J.K.); (M.S.R.); (B.A.B.)
| | - Jamiul Kabir
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, P.O. Box 164, Dhaka 1000, Bangladesh; (S.A.); (J.K.); (M.S.R.); (B.A.B.)
| | - M. Safiur Rahman
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, P.O. Box 164, Dhaka 1000, Bangladesh; (S.A.); (J.K.); (M.S.R.); (B.A.B.)
| | - Bilkis A. Begum
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre, P.O. Box 164, Dhaka 1000, Bangladesh; (S.A.); (J.K.); (M.S.R.); (B.A.B.)
| | - Rubina Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.S.S.); (M.A.S.); (R.R.)
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia;
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, DIU Rd, Dhaka 1341, Bangladesh
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
15
|
Atakoglu OO, Yalcin F. Evaluation of the surface water and sediment quality in the Duger basin (Burdur, Turkey) using multivariate statistical analyses and identification of heavy metals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:484. [PMID: 35672608 DOI: 10.1007/s10661-022-10147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The study aims to determine the chemical contents of the surface water of the Duger Creek and the sediments of the Duger basin, which feeds the Burdur Lake, the correlation between these contents, the potential ecological risks of these contents, the toxic heavy metal contents, and their spatial distribution by using X-ray fluorescence (XRF) spectroscopy method. The Duger basin, which has been selected as the study area, is located on the streams feeding the Burdur Lake, which has been determined as the Ramsar area in Turkey. Burdur Lake has a key role in the ecological balance due to its biological diversity, characteristic animal/plant fauna since it provides a suitable area for seasonal migration of waterfowl. Considering all these functions, the surface water and sediment quality of the Duger basin, which is located in the streams feeding Burdur Lake, is critical. In this study, elemental compositions of 20 water and 20 sediment samples collected from the Duger basin were determined by using the XRF spectroscopy method. Many elements that may have toxicological characteristics in terms of human and environmental health have been detected in the surface water and sediment samples from the Duger basin. These elements were found to have the following average values: Al (60.09 mg/L), Co (3.35 mg/L), Zn (3.35 mg/L), Cu (2.21 mg/L), Cr (0.14 mg/L). It is interpreted that they may be toxic because they exceed the limits specified in WHO 2004. In this context, the surface water in the Duger basin, which feeds the Burdur Lake, must be filtered before using it as drinking water or for agricultural and livestock purposes. New strategic planning is suggested to ensure the sustainability of the basin's surface water quality.
Collapse
Affiliation(s)
- Ozge Ozer Atakoglu
- Department of Geological Engineering, Akdeniz University, 07058, Antalya, Turkey.
| | - Fusun Yalcin
- Department of Mathematics, Akdeniz University, 07058, Antalya, Turkey
| |
Collapse
|
16
|
Majed N, Islam MAS. Contaminant Discharge From Outfalls and Subsequent Aquatic Ecological Risks in the River Systems in Dhaka City: Extent of Waste Load Contribution in Pollution. Front Public Health 2022; 10:880399. [PMID: 35692332 PMCID: PMC9177986 DOI: 10.3389/fpubh.2022.880399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Dhaka, the capital city, which is the nerve center of Bangladesh, is crisscrossed by six different rivers. A network of peripheral rivers connects the city and functions as a natural drainage system for a massive amount of wastewater and sewage by the increased number of inhabitants impacting the overall environmental soundness and human health. This study intended to identify and characterize the outfalls along the peripheral rivers of Dhaka city with the assessment of different pollution indices such as comprehensive pollution index (CPI), organic pollution index (OPI), and ecological risk indices (ERI). The study evaluated the status of the pollution in the aquatic system in terms of ambient water quality parameters along the peripheral rivers due to discharge from outfalls with a particular focus on waste load contribution. Among the identified outfalls, the majority are industrial discharge (60%), and some are originated from municipal (30%), or domestic sewers (10%). Water quality parameters such as suspended solids (SS), 5-day biochemical oxygen demand (BOD5), and Ammoniacal Nitrogen (NH3-N) for most of the peripheral rivers deviated by as much as 40–50% from industrial discharge standards by the environment conservation rules, Bangladesh, 1997. Based on the CPI, the rivers Buriganga, Dhaleshwari, and Turag could be termed as severely polluted (CPI > 2.0), while the OPI indicated heavy organic pollutant (OPI > 4) contamination in the Dhaleshwari and Buriganga rivers. The associated pollution indices demonstrate a trend for each subsequent peripheral river with significant pollution toward the downstream areas. The demonstrated waste loading map from the outfalls identified sources of significant environmental contaminants in different rivers leading to subsequent ecological risks. The study outcomes emphasize the necessity of systematic investigation and monitoring while controlling the point and non-point urban pollution sources discharging into the peripheral rivers of Dhaka city.
Collapse
|
17
|
Yüksel B, Ustaoğlu F, Tokatli C, Islam MS. Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: association between garbage disposal facility and metallic accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17223-17240. [PMID: 34661839 DOI: 10.1007/s11356-021-17023-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/09/2021] [Indexed: 04/16/2023]
Abstract
The objective of this paper was to stress the possible potential toxic element (PTE) accumulation in the surface sediments of the Çavuşlu Stream (ÇS), as well as examining the source identification of whether or not any association between garbage disposal facility (GDF) and ecotoxicity or human health risk in Giresun, Turkey. The sediment specimens were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) followed by microwave digestion. The descending order of metals (mg/kg) in sediments were as follows: Fe (38,791 ± 3269) > Al (27,753 ± 4051) > Mn (730.90 ± 114.60) > Cr (233.39 ± 53.32) > V (176.40 ± 19.66) > Cu (85.22 ± 6.06) > Ni (72.87 ± 11.50) > Zn (46.45 ± 3.68) > Co (21.96 ± 3.33) > Pb (12.17 ± 1.97) > As (3.12 ± 1.45) > Sb (0.22 ± 0.06) > Cd (0.17 ± 0.02) > Hg (0.04 ± 0.01). Among these elements, certain metals (V, Cr, Cu, and Ni) in the sediments were above the average shale. Cr and Ni levels were above their corresponding threshold effect level (TEL) and probable effect level (PEL) values while Cu concentration exceeding its TEL, indicating that benthic organisms in the sediment of ÇS have likely toxic responses. Based on the results from contamination factor (CF), enrichment factor (EF), and geo-accumulation factor (Igeo) values of PTEs, the sediment was frequently classified into moderate contamination, moderate enrichment, and unpolluted to moderately polluted group. Pollution load index (PLI), integrated pollution index (IPI), and ecological risk index (Eri) indicated low pollution or low potential ecological risk. Toxicity risk index (TRI) and toxic unit analysis (TUs) suggested moderate toxicity. The outcomes of hazard quotient (HQ), total hazard index (THI), and lifetime cancer risk (LCR) stressed out that PTEs would not pose a significant health risk when adults are exposed to sediments in ÇS. However, a non-cancerogenic health risk for children was considered as the collective effect of 14 PTE (THI = 1.47 > 1). Multivariate statistical analysis (principal component analysis (PCA), Pearson's correlation coefficient (PCC), and hierarchical cluster analysis (HCA)) outlined that the metallic accumulation in the sediments of ÇS was related to lithological, geological, and anthropogenic impacts. Therefore, the GDF is likely a major reason in terms of anthropogenic pollution in the sediments of the ÇS.
Collapse
Affiliation(s)
- Bayram Yüksel
- Department of Property Protection and Security, Giresun University, Espiye, 28600, Giresun, Turkey
| | - Fikret Ustaoğlu
- Biology Department, Faculty of Arts and Science, Giresun University, 28200, Giresun, Turkey
| | - Cem Tokatli
- Department of Laboratory Technology, Evrenos Gazi Campus, Trakya University, İpsala, Edirne, Turkey
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| |
Collapse
|
18
|
Sarker A, Kim JE, Islam ARMT, Bilal M, Rakib MRJ, Nandi R, Rahman MM, Islam T. Heavy metals contamination and associated health risks in food webs-a review focuses on food safety and environmental sustainability in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3230-3245. [PMID: 34739668 PMCID: PMC8569293 DOI: 10.1007/s11356-021-17153-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/18/2021] [Indexed: 05/09/2023]
Abstract
Heavy metals occur naturally in very small amounts in living organisms, but exposure to their higher concentrations is hazardous. Heavy metals at hazardous levels are commonly found in foodstuffs of Bangladesh, mainly due to the lack of safety guidelines and poor management of industrial effluents. Several lines of evidence suggest that the level of heavy metals in foodstuffs of Bangladesh is higher than the acceptable limits set by World Health Organization/Food and Agriculture Organization. Literature survey revealed that the sources and transport pathways of heavy metals in the ecosystem and the abundance of heavy metals in the food products of Bangladesh are potential threats to food safety. However, an extensive assessment of the toxicity of heavy metals in food webs is lacking. Although widespread heavy metal contamination in various foodstuffs and environmental matrices have been summarized in some reports, a critical evaluation regarding multi-trophic transfer and the health risk of heavy metal exposure through food chain toxicity in Bangladesh has not been performed. This systematic review critically discussed heavy metal contamination, exposure toxicity, research gaps, existing legislation, and sustainable remediation strategies to enhance Bangladesh's food safety. In particular, this study for the first time explored the potential multi-trophic transfer of heavy metals via food webs in Bangladesh. Furthermore, we recommended a conceptual policy framework to combat heavy metal contaminations in Bangladesh.
Collapse
Affiliation(s)
- Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Soil Science, EXIM Bank Agricultural University Bangladesh (EBAUB), Chapainawabganj, Bangladesh
| | - Jang-Eok Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rakhi Nandi
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Mohammed M Rahman
- Department of Chemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| |
Collapse
|
19
|
Ali MM, Ali ML, Rakib MRJ, Islam MS, Habib A, Hossen S, Ibrahim KA, Idris AM, Phoungthong K. Contamination and ecological risk assessment of heavy metals in water and sediment from hubs of fish resource river in a developing country. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2001829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Mohammad Lokman Ali
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| | - Md. Refat Jahan Rakib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand
| | - Ahasan Habib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu 21030, Kuala Nerus, Terengganu, Malaysia
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu-59626, Korea
| | - Khalid A. Ibrahim
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Khamphe Phoungthong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|
20
|
Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. WATER 2021. [DOI: 10.3390/w13162258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water quality has deteriorated in recent years as a result of rising population and unplanned development, impacting ecosystem health. The water quality parameters of Qaroun Lake are contaminated to varying degrees, particularly for aquatic life consumption. For that, the objective of this work is to improve the assessments of surface water quality and to determine the different geo-environmental parameters affecting the lake environmental system in Qaroun Lake utilizing the weighted arithmetic water quality index (WAWQI) and four pollution indices (heavy metal pollution index (HPI), metal index (MI), contamination index (Cd), and pollution index (PI), that are enhanced by multivariate analyses as cluster analysis (CA), principal component analysis (PCA), and support vector machine regression (SVMR). Surface water samples were collected at 16 different locations from the lake during years 2018 and 2019. Thirteen physiochemical parameters were measured and used to calculate water quality indices (WQIs). The WQIs of Qaroun Lake such WAWQI, HPI, MI, Cd, PI revealed a different degree of contamination, with respect to aquatic life utilization. The WQIs result revealed that surface water in the lake is unsuitable, high polluted, and seriously affected by pollution for an aquatic environment. The PI findings revealed that surface water samples of Qaroun Lake were significantly impacted by Al, moderately affected by Cd and Cu, and while slightly affected by Zn due to uncontrolled releases of domestic and industrial wastewater. Furthermore, increasing salinity accelerates the deterioration of the lake aquatic environment. Therefore, sewage and drainage wastewater should be treated before discharging into the lake. The SVMR models based on physiochemical parameters presented the highest performance as an alternative method to predict the WQIs. For example, the calibration (Val.) and the validation (Val.) models performed best in assessing the WQIs with R2 (0.99) and with R2 (0.97–0.99), respectively. Finally, a combination of WQIs, CA, PCA, and SVMR approaches could be employed to assess surface water quality in Qaroun Lake.
Collapse
|