1
|
Price JL, Visagie CM, Meyer H, Yilmaz N. Fungal Species and Mycotoxins Associated with Maize Ear Rots Collected from the Eastern Cape in South Africa. Toxins (Basel) 2024; 16:95. [PMID: 38393173 PMCID: PMC10891880 DOI: 10.3390/toxins16020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Maize production in South Africa is concentrated in its central provinces. The Eastern Cape contributes less than 1% of total production, but is steadily increasing its production and has been identified as a priority region for future growth. In this study, we surveyed ear rots at maize farms in the Eastern Cape, and mycotoxins were determined to be present in collected samples. Fungal isolations were made from mouldy ears and species identified using morphology and DNA sequences. Cladosporium, Diplodia, Fusarium and Gibberella ear rots were observed during field work, and of these, we collected 78 samples and isolated 83 fungal strains. Fusarium was identified from Fusarium ear rot (FER) and Gibberella ear rot (GER) and Stenocarpella from Diplodia ear rot (DER) samples, respectively. Using LC-MS/MS multi-mycotoxin analysis, it was revealed that 83% of the collected samples contained mycotoxins, and 17% contained no mycotoxins. Fifty percent of samples contained multiple mycotoxins (deoxynivalenol, 15-acetyl-deoxynivalenol, diplodiatoxin and zearalenone) and 33% contained a single mycotoxin. Fusarium verticillioides was not isolated and fumonisins not detected during this survey. This study revealed that ear rots in the Eastern Cape are caused by a wide range of species that may produce various mycotoxins.
Collapse
Affiliation(s)
- Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa; (J.-L.P.); (C.M.V.)
| | - Cobus Meyer Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa; (J.-L.P.); (C.M.V.)
| | - Hannalien Meyer
- Southern African Grain Laboratory (SAGL), Grain Building-Agri Hub Office Park, 477 Witherite Street, The Willows, Pretoria 0040, South Africa;
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa; (J.-L.P.); (C.M.V.)
| |
Collapse
|
2
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
3
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
4
|
Wit M, Leng Y, Du Y, Cegiełko M, Jabłońska E, Wakuliński W, Zhong S. Genome Sequence Resources for the Maize Pathogen Fusarium temperatum Isolated in Poland. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:214-217. [PMID: 33064593 DOI: 10.1094/mpmi-09-20-0266-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium temperatum (Scaufl. & Munaut) is one of the most important fungal pathogens that cause ear and stalk rots in maize. In this study, we sequenced genomes of two F. temperatum isolates (KFI615 and KFI660) isolated from corn ears in Poland. A total of 110.3 and 116.3 million 100-nucleotide paired-end clean reads were obtained for KFI615 and KFI660, which were assembled into 20 and 18 scaffolds with an estimated genome size of 45.21 and 45.00 Mb, respectively. These genome sequences provide important resources for understanding pathogenicity and biology of the pathogens within the Fusarium fujikuroi complex.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marcin Wit
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Yang Du
- Department of Computer Systems and Software Engineering, Valley City State University, Valley City, ND 58072, U.S.A
| | | | - Emilia Jabłońska
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Wojciech Wakuliński
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Science, 02-776 Warsaw, Poland
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
5
|
Fumero MV, Yue W, Chiotta ML, Chulze SN, Leslie JF, Toomajian C. Divergence and Gene Flow Between Fusarium subglutinans and F. temperatum Isolated from Maize in Argentina. PHYTOPATHOLOGY 2021; 111:170-183. [PMID: 33079019 DOI: 10.1094/phyto-09-20-0434-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium subglutinans and F. temperatum are two important fungal pathogens of maize whose distinctness as separate species has been difficult to assess. We isolated strains of these species from commercial and native maize varieties in Argentina and sequenced >28,000 loci to estimate genetic variation in the sample. Our objectives were to measure genetic divergence between the species, infer demographic parameters related to their split, and describe the population structure of the sample. When analyzed together, over 30% of each species' polymorphic sites (>2,500 sites) segregate as polymorphisms in the other. Demographic modeling confirmed the species split predated maize domestication, but subsequent between-species gene flow has occurred, with gene flow from F. subglutinans into F. temperatum greater than gene flow in the reverse direction. In F. subglutinans, little evidence exists for substructure or recent selective sweeps, but there is evidence for limited sexual reproduction. In F. temperatum, there is clear evidence for population substructure and signals of abundant recent selective sweeps, with sexual reproduction probably less common than in F. subglutinans. Both genetic variation and the relative number of polymorphisms shared between species increase near the telomeres of all 12 chromosomes, where genes related to plant-pathogen interactions often are located. Our results suggest that species boundaries between closely related Fusarium species can be semipermeable and merit further study. Such semipermeability could facilitate unanticipated genetic exchange between species and enable quicker permanent responses to changes in the agro-ecosystem, e.g., pathogen-resistant host varieties, new chemical and biological control agents, and agronomic practices.
Collapse
Affiliation(s)
- M Veronica Fumero
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - María L Chiotta
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Sofía N Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | | |
Collapse
|
6
|
Occurrence, Pathogenicity, and Mycotoxin Production of Fusarium temperatum in Relation to Other Fusarium Species on Maize in Germany. Pathogens 2020; 9:pathogens9110864. [PMID: 33105838 PMCID: PMC7690569 DOI: 10.3390/pathogens9110864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/03/2022] Open
Abstract
Fusarium subglutinans is a plant pathogenic fungus infecting cereal grain crops. In 2011, the species was divided in Fusarium temperatumsp. nov. and F. subglutinans sensu stricto. In order to determine the occurrence and significance of F. temperatum and F. subglutinans on maize, a monitoring of maize ears and stalks was carried out in Germany in 2017 and 2018. Species identification was conducted by analysis of the translation elongation factor 1α (TEF-1α) gene. Ninety-four isolates of F. temperatum and eight isolates of F. subglutinans were obtained during two years of monitoring from 60 sampling sites in nine federal states of Germany. Inoculation of maize ears revealed a superior aggressiveness for F. temperatum, followed by Fusarium graminearum, Fusarium verticillioides, and F. subglutinans. On maize stalks, F. graminearum was the most aggressive species while F. temperatum and F. subglutinans caused only small lesions. The optimal temperature for infection of maize ears with F. temperatum was 24 °C and 21 °C for F. subglutinans. All strains of F. temperatum and F. subglutinans were pathogenic on wheat and capable to cause moderate to severe head blight symptoms. The assessment of mycotoxin production of 60 strains of F. temperatum cultivated on rice revealed that all strains produced beauvericin, moniliformin, fusaric acid, and fusaproliferin. The results demonstrate a higher prevalence and aggressiveness of F. temperatum compared to F. subglutinans in German maize cultivation areas.
Collapse
|
7
|
Susca A, Villani A, Moretti A, Stea G, Logrieco A. Identification of toxigenic fungal species associated with maize ear rot: Calmodulin as single informative gene. Int J Food Microbiol 2020; 319:108491. [PMID: 31935649 DOI: 10.1016/j.ijfoodmicro.2019.108491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Accurate identification of fungi occurring on agrofood products is the key aspect of any prevention and pest management program, offering valuable information in leading crop health and food safety. Fungal species misidentification can dramatically impact biodiversity assessment, ecological studies, management decisions, and, concerning toxigenic fungi, health risk assessment, since they can produce a wide range of toxic secondary metabolites, referred to as mycotoxins. Since each toxigenic fungal species can have its own mycotoxin profile, a correct species identification, hereby attempted with universal DNA barcoding approach, could have a key role in mycotoxins prevention strategies. Currently, identification of single marker for species resolution in fungi has not been achieved and the analysis of multiple genes is used, with the advantage of an accurate species identification and disadvantage of difficult setting up of PCR-based diagnostic assays. In the present paper, we describe our strategy to set up a DNA-based species identification of fungal species associated with maize ear rot, combining DNA barcoding approach and species-specific primers design for PCR based assays. We have (i) investigated the appropriate molecular marker for species identification, limited to mycobiota possibly occurring on maize, identifying calmodulin gene as single taxonomically informative entity; (ii) designed 17 sets of primers for rapid identification of 14 Fusarium, 10 Aspergillus, 2 Penicillium, and 2 Talaromyces species or species groups, and finally (iii) tested specificity of the 17 set of primers, in combination with 3 additional sets previously developed.
Collapse
Affiliation(s)
- Antonia Susca
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Gaetano Stea
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio Logrieco
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
8
|
Carrillo JD, Rugman-Jones PF, Husein D, Stajich JE, Kasson MT, Carrillo D, Stouthamer R, Eskalen A. Members of the Euwallacea fornicatus species complex exhibit promiscuous mutualism with ambrosia fungi in Taiwan. Fungal Genet Biol 2019; 133:103269. [DOI: 10.1016/j.fgb.2019.103269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
|
9
|
One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00433-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Qi H, Yang J, Yin C, Zhao J, Ren X, Jia S, Zhang G. Analysis of Pyricularia oryzae and P. grisea from Different Hosts Based on Multilocus Phylogeny and Pathogenicity Associated with Host Preference in China. PHYTOPATHOLOGY 2019; 109:1433-1440. [PMID: 30973308 DOI: 10.1094/phyto-10-18-0383-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pyricularia oryzae and P. grisea are important agents of major diseases on a wide range of gramineous hosts. Whereas P. oryzae is the most important pathogen causing outbreaks of rice blast, P. grisea is mainly a pathogen of crabgrass. In this study, 103 P. oryzae and 20 P. grisea isolates were collected from seven species of plants, and we analyzed their phylogeny, pathogenicity, and relationship with host preferences to investigate the differences among them from different hosts. Based on phylogenetic analysis of multilocus sequences, 16 isolates from crabgrass and four isolates from green bristlegrass were identified as P. grisea and another 103 isolates from crabgrass, green bristlegrass, goose grass, foxtail millet, wild millet, rice, and sedge belonged to P. oryzae. Results of pathogenicity tests by artificial inoculation demonstrated that six of 10 P. oryzae isolates from rice and three of 44 P. oryzae isolates from green bristlegrass showed cross-infectivity on green bristlegrass and rice, respectively. Taken together, our results demonstrated that isolates from green bristlegrass and crabgrass consist of both P. oryzae and P. grisea and that P. oryzae isolates showed cross-infectivity between rice and green bristlegrass, suggesting that host shifts may occur for P. oryzae and P. grisea.
Collapse
Affiliation(s)
- Hexing Qi
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jian Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xianxian Ren
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shishuang Jia
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guozhen Zhang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Ioos R, Aloi F, Piškur B, Guinet C, Mullett M, Berbegal M, Bragança H, Cacciola SO, Oskay F, Cornejo C, Adamson K, Douanla-Meli C, Kačergius A, Martínez-Álvarez P, Nowakowska JA, Luchi N, Vettraino AM, Ahumada R, Pasquali M, Fourie G, Kanetis L, Alves A, Ghelardini L, Dvořák M, Sanz-Ros A, Diez JJ, Baskarathevan J, Aguayo J. Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum. Sci Rep 2019; 9:8195. [PMID: 31160683 PMCID: PMC6546748 DOI: 10.1038/s41598-019-44672-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/22/2019] [Indexed: 02/01/2023] Open
Abstract
Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.
Collapse
Affiliation(s)
- Renaud Ioos
- ANSES Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt Bât. E, 54220, Malzéville, France.
| | - Francesco Aloi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia, 100, Catania, 95123, Italy.,Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Barbara Piškur
- Slovenian Forestry Institute, Department of Forest Protection, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - Cécile Guinet
- ANSES Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt Bât. E, 54220, Malzéville, France
| | - Martin Mullett
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, United Kingdom.,Phytophthora Research Center, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Helena Bragança
- Instituto Nacional de Investigação Agrária e Veterinária I.P. (INIAV I.P.), Quinta do Marquês, 2780-159, Oeiras, Portugal
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia, 100, Catania, 95123, Italy
| | - Funda Oskay
- Çankırı Karatekin University, Faculty of Forestry, 18200, Çankırı, Turkey
| | - Carolina Cornejo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 51006, Tartu, Estonia
| | - Clovis Douanla-Meli
- Julius Kühn-Institut, Institute for National and International Plant Health, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Vokė Branch, Zalioji Sq. 2, 02232, Vilnius, Lithuania
| | - Pablo Martínez-Álvarez
- Sustainable Forest Management Research Institute, University of Valladolid - INIA/Department of Vegetal Production and Forest Resources, University of Valladolid, 47011, Palencia, Spain
| | - Justyna Anna Nowakowska
- Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Sciences, Wóycickiego 1/3 Street, 01-938, Warsaw, Poland
| | - Nicola Luchi
- Institute for Sustainable Plant Protection - National Research Council (IPSP-CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Florence, Italy
| | - Anna Maria Vettraino
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, via S. Camillo de Lellis, snc, 01100, Viterbo, Italy
| | - Rodrigo Ahumada
- Bioforest S.A. Camino a Coronel km 15S/N, 4030000, Concepción, Chile
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, I-20133, Milano, Italy
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0028 Hatfield, Pretoria, South Africa
| | - Loukas Kanetis
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Luisa Ghelardini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), University of Florence, 50144, Florence, Italy
| | - Miloň Dvořák
- Phytophthora Research Center, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Antonio Sanz-Ros
- Forest Health Center of Calabazanos, Regional Government of Castilla y León, JCyL, Poligono Industrial de Villamuriel, S/N, 30190, Villamuriel de Cerrato, Palencia, Spain
| | - Julio J Diez
- Sustainable Forest Management Research Institute, University of Valladolid - INIA/Department of Vegetal Production and Forest Resources, University of Valladolid, 47011, Palencia, Spain
| | - Jeyaseelan Baskarathevan
- Plant Health & Environment Laboratory, Diagnostic and Surveillance Services, Biosecurity New Zealand, Ministry for Primary Industries, PO Box 2095, Auckland, 1140, New Zealand
| | - Jaime Aguayo
- ANSES Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt Bât. E, 54220, Malzéville, France
| |
Collapse
|
12
|
Shan L, Abdul Haseeb H, Zhang J, Zhang D, Jeffers DP, Dai X, Guo W. A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. Int J Food Microbiol 2019; 291:72-78. [DOI: 10.1016/j.ijfoodmicro.2018.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 11/17/2022]
|
13
|
Stępień Ł, Gromadzka K, Chełkowski J, Basińska-Barczak A, Lalak-Kańczugowska J. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. J Appl Genet 2018; 60:113-121. [PMID: 30430379 PMCID: PMC6373406 DOI: 10.1007/s13353-018-0478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022]
Abstract
Maize ear rot is a common disease found worldwide, caused by several toxigenic Fusarium species. Maize ears and kernels infected by Fusarium subglutinans contained significant amounts of beauvericin, fusaproliferin, moniliformin, and enniatins. In 2011, F. subglutinans sensu lato has been divided into two species: Fusarium temperatum sp. nov. and F. subglutinans sensu stricto, showing different phylogeny and beauvericin production within the populations of maize pathogens in Belgium. Isolates of the new species—F. temperatum—were also identified and characterized in Spain, Argentina, Poland, France, and China as one of the most important pathogens of maize. Moreover, F. temperatum was proved to be pathogenic to maize seedlings and stalks. We identified Fusarium isolates obtained from diseased maize ears collected between 2013 and 2016 in Poland (321 isolates). Based on morphological analyses, six Fusarium species were identified. Molecular identification performed on the set of selected isolates (42 isolates) revealed 34 isolates to be F. temperatum and only five to be F. subglutinans. Interestingly, the phylogenetic analysis showed that the population of F. temperatum infecting maize in Poland remained quite uniform for over 30 years with only a few exceptions. For the first time, a single isolate of Fusarium ramigenum was detected from the area of Poland. Significant amounts of BEA were found in Fusarium-damaged kernels. The same kernel samples contained also enniatins A1, A, B1, and B. The results clearly demonstrate the occurrence of F. temperatum as maize pathogen in Poland for over the last three decades.
Collapse
Affiliation(s)
- Ł Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - K Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - J Chełkowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - A Basińska-Barczak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - J Lalak-Kańczugowska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
14
|
Fusarium species as pathogen on orchids. Microbiol Res 2018; 207:188-195. [DOI: 10.1016/j.micres.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 01/22/2023]
|
15
|
Molina MC, DePriest PT, Lawrey JD. Genetic variation in the widespread lichenicolous fungusMarchandiomyces corallinus. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Carmen Molina
- Departamento de Matemáticas y Física Aplicadas y Ciencias de la Naturaleza, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid, España
| | - Paula T. DePriest
- Botany Section, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012
| | - James D. Lawrey
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030-4444
| |
Collapse
|
16
|
Dettman JR, Jacobson DJ, Taylor JW. Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| |
Collapse
|
17
|
Pavlic D, Slippers B, Coutinho TA, Wingfield MJ. Molecular and phenotypic characterization of three phylogenetic species discovered within theNeofusicoccum parvum/N. ribiscomplex. Mycologia 2017; 101:636-47. [DOI: 10.3852/08-193] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Draginja Pavlic
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Centre of Excellence in Tree Health Biotechnology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Bernard Slippers
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Centre of Excellence in Tree Health Biotechnology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Centre of Excellence in Tree Health Biotechnology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
18
|
Barej MF, Penner J, Schmitz A, Rödel MO. Multiple genetic lineages challenge the monospecific status of the West African endemic frog family Odontobatrachidae. BMC Evol Biol 2015; 15:67. [PMID: 25928080 PMCID: PMC4425868 DOI: 10.1186/s12862-015-0346-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background Correct species identification is crucial in different fields of biology, and in conservation. The endemic West African frog family Odontobatrachidae currently contains a single described species, Odontobatrachus natator. From western Guinea to western Côte d'Ivoire it inhabits forests around waterfalls or cascades. Based on more than 130 specimens from 78 localities, covering the entire distribution, we investigated the molecular diversity of these frogs. Results Our analyses included mitochondrial and nuclear genes, with a concatenated alignment of 3527 base pairs. We detected high level of genetic differentiation with five distinct lineages or operational taxonomic units (OTUs). These OTUs were also identified by two different species delimitation approaches, Generalized Mixed Yule Coalescent (GMYC) and cluster algorithm. All OTUs occur in parapatry in the Upper Guinean forests. One OTU, assigned to the “true” Odontobatrachus natator, covers the largest distribution, ranging from the border region of western Sierra Leone-Guinea to eastern Liberia. Two OTUs are restricted to western Guinea (Fouta Djallon and foothills), while two others occur in eastern Guinea and the border region of Guinea-Liberia-Côte d'Ivoire. The OTU representing O. natator consists of two divergent subclades: one restricted to the Freetown Peninsula (Sierra Leone) and the other covering all populations further inland. Environmental niche models indicated that the restricted Freetown Peninsula population is separated by unsuitable habitat from remaining populations. Conclusion Geographic isolation of OTUs and molecular differences comparable to species level differentiation in other frog families indicate that O. natator contains cryptic species diversity. Respective distribution patterns most probably resulted from repeated changes of forest cover (contraction and expansion) over evolutionary timescales. The survival within forest refugia that have persisted through multiple drier periods and subsequent dispersal during wetter times may best explain the observed geographic distributions of OTUs. According to the IUCN Red List range criteria each OTU should be classified as “Endangered.” If the Freetown Peninsula “natator” population is recognized as a distinct species it would warrant recognition as “Critically Endangered.” The identification of cryptic lineages highlights the urgent need to protect these frogs, all of which are endemic to small areas within the Upper Guinean biodiversity hotspot. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0346-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael F Barej
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| | - Johannes Penner
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| | - Andreas Schmitz
- Department of Herpetology and Ichthyology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland.
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| |
Collapse
|
19
|
Lactarius volemus sensu lato (Russulales) from northern Thailand: morphological and phylogenetic species concepts explored. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-010-0070-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Proctor RH, McCormick SP, Alexander NJ, Desjardins AE. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 2009; 74:1128-42. [PMID: 19843228 DOI: 10.1111/j.1365-2958.2009.06927.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have trichothecene biosynthetic genes (TRI) at three loci: a 12-gene TRI cluster and two smaller TRI loci that consist of one or two genes. Here, comparisons of additional Fusarium species have provided evidence that TRI loci have a complex evolutionary history that has included loss, non-functionalization and rearrangement of genes as well as trans-species polymorphism. The results also indicate that the TRI cluster has expanded in some species by relocation of two genes into it from the smaller loci. Thus, evolutionary forces have driven consolidation of TRI genes into fewer loci in some fusaria but have maintained three distinct TRI loci in others.
Collapse
Affiliation(s)
- Robert H Proctor
- U. S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA.
| | | | | | | |
Collapse
|
21
|
Isolation, purification and antibacterial effects of fusaproliferin produced by Fusarium subglutinans in submerged culture. Food Chem Toxicol 2009; 47:2539-43. [DOI: 10.1016/j.fct.2009.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
|
22
|
Ioos R, Fourrier C, Iancu G, Gordon TR. Sensitive detection of Fusarium circinatum in pine seed by combining an enrichment procedure with a real-time polymerase chain reaction using dual-labeled probe chemistry. PHYTOPATHOLOGY 2009; 99:582-590. [PMID: 19351254 DOI: 10.1094/phyto-99-5-0582] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fusarium circinatum is the causal agent of pitch canker disease on numerous Pinus spp. This aggressive fungus may infect pine seed cryptically and, therefore, can easily be spread long distances by the seed trade. F. circinatum has recently been listed as a quarantine organism in numerous countries throughout the world, which prompted the development of a specific and sensitive tool for the detection of this pathogen in conifer seed. A new detection protocol for F. circinatum based on a biological enrichment step followed by a real-time polymerase chain reaction (PCR) assay was developed. Several enrichment protocols were compared and a 72-h incubation of the seed with potato dextrose broth was the most efficient technique to increase F. circinatum biomass before DNA extraction. The relative accuracy, specificity, and sensitivity of the real-time PCR assay was evaluated in comparison with a previously published conventional PCR test on 420 seed DNA extracts. The real-time PCR described here proved to be highly specific and significantly more sensitive than the conventional PCR, and enabled the detection of F. circinatum in samples artificially contaminated with less than 1/1,000 infected seed, as well as in naturally infected samples. Last, in order to routinely check the quality of the seed DNA extracts, a primer-probe combination that targets a highly conserved region within the 18S ribosomal DNA in plants or fungi was successfully developed. This assay allows for quick and reliable detection of F. circinatum in seed, which can help to prevent long-distance spread of the pathogen via contaminated seed lots.
Collapse
Affiliation(s)
- Renaud Ioos
- Laboratoire National de la Protection des Végétaux, Station de mycologie, IFR 110 Génomique, Ecophysiologie et Ecologie Fonctionnelles, Malzéville, France.
| | | | | | | |
Collapse
|
23
|
Devi KU, Reineke A, Reddy NNR, Rao CUM, Padmavathi J. Genetic diversity, reproductive biology, and speciation in the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. Genome 2006; 49:495-504. [PMID: 16767174 DOI: 10.1139/g06-004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beauveria bassiana, a mitosporic fungus used for the biological control of many insect species, is recognized as a "species complex" comprising genetically diverse lineages. Being predominantly asexual, mating tests cannot be applied to delimit species in this species complex. Genetic tests offer an indirect means of identifying species among isolates. To this end, molecular genetic analysis of a sample of B. bassiana isolates with 2 subsamples, 1 representing a worldwide collection and another from a localized epizootic population was carried out. DNA markers generated through AFLPs (amplified fragment length polymorphisms) and SSCPs (single-strand conformation poly morphisms) and nucleotide sequence data of different allelic forms of 3 genes (large and small subunits of rRNA and beta-tubulin) were evaluated. The B. bassiana isolates from the worldwide sample showed 11% overall similarity and no closely clustered groups. Phylogenetic trees generated from the AFLP and SSCP data of this sample resolved the different isolates into distinct phylogenetic lineages. In the epizootic B. bassiana population, prevalence of recombination was evident from random association of alleles in multilocus tests and lack of phylogenetic concordance among 3 gene genealogies. Thus, the worldwide sample of B. bassiana exhibits a predominantly clonal structure, hinting at species divergence leading to cryptic speciation with recombination being customary among isolates sharing a close ecological niche.
Collapse
Affiliation(s)
- K Uma Devi
- Department of Botany, Andhra University, AP India.
| | | | | | | | | |
Collapse
|
24
|
RAPD analysis of Fusarium Isolates Causing “Mango Malformation” Disease in Pakistan. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9157-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|