1
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Ren H, Zhang Z, Chen X, He C. Stimuli-Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration. Macromol Biosci 2024; 24:e2300379. [PMID: 37827713 DOI: 10.1002/mabi.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Sutures and staplers, as gold standards for clinical wound closure, usually cause secondary tissue injury and require professional technicians and equipment. The noninvasive hydrogel adhesives are used in various biomedical applications, such as wound closure, tissue sealing, and tissue regeneration, due to their remarkable properties. Recently-developed hydrogel adhesives, especially stimuli-responsive hydrogels, have shown great potential owing to their advantages in regulating their performance and functions according to the wound situations or external conditions, thus allowing the wounds to heal gradually. However, comprehensive summary on stimuli-responsive hydrogels as tissue adhesives is rarely reported to date. This review focuses on the advances in the design of various stimuli-responsive hydrogel adhesives over the past decade, including the systems responsive to pH, temperature, photo, and enzymes. Their potential biomedical applications, such as skin closure, cardiovascular and liver hemostasis, and gastrointestinal sealing, are emphasized. Meanwhile, the challenges and future development of stimuli-responsive hydrogel adhesives are discussed. This review aims to provide meaningful insights for the further design of next-generation of hydrogel adhesives for wound closure and tissue regeneration.
Collapse
Affiliation(s)
- Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Chen M, Chen T, Bai J, He S, Luo M, Zeng Y, Peng W, Zhao Y, Wang J, Zhu X, Zhi W, Weng J, Zhang K, Zhang X. A Nature-Inspired Versatile Bio-Adhesive. Adv Healthc Mater 2023; 12:e2301560. [PMID: 37548628 DOI: 10.1002/adhm.202301560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.
Collapse
Affiliation(s)
- Mingxia Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Taijun Chen
- Chengdu University of Traditional Chinese Medicine, School of Intelligent Medicine, Chengdu, 611137, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Minyue Luo
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Tian Y, Hu M, Liu X, Wang X, Lu D, Li Z, Liu Y, Zhang P, Zhou Y. ZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion. Int J Mol Sci 2023; 24:ijms24119766. [PMID: 37298717 DOI: 10.3390/ijms24119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+SCA-1+CD45-TER119-) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2. The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application.
Collapse
Affiliation(s)
- Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
5
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. SOFT MATTER 2022; 18:3447-3464. [PMID: 35470362 DOI: 10.1039/d2sm00265e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of adhesion has revealed a significant impact on numerous applications such as wound healing, drug delivery, electrically conductive adhesive, dental adhesive, and wood industry. Nanotechnology has continued to be the primary means to achieve adhesion. Among them, biological systems based on the unique structure of the nano-levels have developed excellent adhesion capabilities after billions of years of evolution and natural selection. Therefore, the research on bionic adhesion inspired by biological systems has gradually emerged. This review firstly focuses on the mechanism of adhesion, and secondly reports the effects of different nanomaterials on adhesion properties. Then based on the structure of mussels, geckos, tree frogs, octopuses, and other organisms, the research progress of biomimetic nanotechnology to achieve adhesion is summarized. Finally, the applications, challenges, and future directions of nanotechnology in new adhesive materials are provided.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
- School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
7
|
Pandey N, Soto-Garcia L, Yaman S, Kuriakose A, Rivera AU, Jones V, Liao J, Zimmern P, Nguyen KT, Hong Y. Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. BIOMATERIALS ADVANCES 2022; 134:112589. [PMID: 35525749 PMCID: PMC9753139 DOI: 10.1016/j.msec.2021.112589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andres Urias Rivera
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Valinda Jones
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
10
|
Park J, Kim Y, Chun B, Seo J. Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnol J 2021; 16:e2100231. [PMID: 34469052 DOI: 10.1002/biot.202100231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
For the past decades, several bioadhesives have been developed to replace conventional wound closure medical tools such as sutures, staples, and clips. The bioadhesives are easy to use and can minimize tissue damage. They are designed to provide strong adhesion with stable mechanical support on tissue surfaces. However, this monofunctionality of the bioadhesives hinders their practical applications. In particular, a bioadhesive can lose its intended function under harsh tissue environments or delay tissue regeneration during wound healing. Based on several natural and synthetic biomaterials, functional bioadhesives have been developed to overcome the aforementioned limitations. The functional bioadhesives are designed to have specific characteristics such as antimicrobial, cell infiltrative, stimuli-responsive, electrically conductive, and self-healing to ensure stability under harsh tissue conditions, facilitate tissue regeneration, and effectively monitor biosignals. Herein, we thoroughly review the functional bioadhesives from their fundamental background to recent progress with their practical applications for the enhancement of tissue healing and effective biosignal sensing. Furthermore, the future perspectives on the applications of functional bioadhesives and current challenges in their commercialization are also discussed.
Collapse
Affiliation(s)
- Jae Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yeonju Kim
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Beomsoo Chun
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Bal-Ozturk A, Cecen B, Avci-Adali M, Topkaya SN, Alarcin E, Yasayan G, Ethan YC, Bulkurcuoglu B, Akpek A, Avci H, Shi K, Shin SR, Hassan S. Tissue Adhesives: From Research to Clinical Translation. NANO TODAY 2021; 36:101049. [PMID: 33425002 PMCID: PMC7793024 DOI: 10.1016/j.nantod.2020.101049] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sutures, staples, clips and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation. They are fluid or semi-fluid mixtures that can be easily used to seal any wound of any morphology - uniform or irregular. As such, they provide alternatives to new and novel platforms for wound closure methods. In this review, we offer a background on the improvement of distinctive tissue adhesives focusing on the chemistry of some of these products that have been a commercial success from the clinical application perspective. This review is aimed to provide a guide toward innovation of tissue bioadhesive materials and their associated biomedical applications.
Collapse
Affiliation(s)
- Ayça Bal-Ozturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Zeytinburnu, Istanbul, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Yi-Chen Ethan
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Ali Akpek
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Department of Bioengineering, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Sabanci University Nanotechnology Research & Application Center, 34956, Tuzla Istanbul-Turkey
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering, Faculty of Engineering and Architecture Eskisehir Osmangazi University Eskisehir Turkey
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Felix da Silva Barbosa R, Gabrieli de Souza A, Rangari V, Rosa DDS. The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release. Food Chem 2020; 344:128611. [PMID: 33221104 DOI: 10.1016/j.foodchem.2020.128611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Nanoencapsulation provides new alternatives for the food industry, enabling a controlled and slow release of active antimicrobial agents, such as essential oils (EO). Poly (butylene adipate-co-terephthalate) (PBAT) nanocapsules loaded with linalool EO were prepared using an extrusion method with 1, 3, and 5% w/v (PBAT to chloroform). Nanocapsules' sizes ranged from 100 to 250 nm and were spherical. The release profile was studied using an ethanoic medium over 24 h, and according to the Korsmeyer-Peppas model, a Fick diffusion mechanism was involved. FT-IR and thermogravimetric analyses confirmed EO encapsulation with an encapsulation efficiency of 55%, 71%, and 74% for 1, 3, and 5%, respectively. The results indicated that encapsulation depended on organic phase concentration, with higher PBAT contents achieving better results. The resulting nanocapsules had antimicrobial activity against E. coli, which could be extended to develop active packaging systems.
Collapse
Affiliation(s)
- Rennan Felix da Silva Barbosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Alana Gabrieli de Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Vijaya Rangari
- Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088, USA
| | - Derval Dos Santos Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil.
| |
Collapse
|
13
|
Gillman N, Lloyd D, Bindra R, Ruan R, Zheng M. Surgical applications of intracorporal tissue adhesive agents: current evidence and future development. Expert Rev Med Devices 2020; 17:443-460. [PMID: 32176853 DOI: 10.1080/17434440.2020.1743682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Traditional mechanical closure techniques pose many challenges including the risk of infection, tissue reaction, and injury to both patients and clinicians. There is an urgent need to develop tissue adhesive agents to reform closure technique. This review examined a variety of tissue adhesive agents available in the market in an attempt to gain a better understanding of intracorporal tissue adhesive agents as medical devices.Areas covered: Fundamental principles and clinical determinants of the tissue adhesives were summarized. The available tissue adhesives for intracorporal use and their relevant clinical evidence were then presented. Lastly, the perspective of future development for intracorporal tissue adhesive were discussed. Clinical evidence shows current agents are efficacious as adjunctive measures to mechanical closure and these agents have been trialed outside of clinical indications with varied results.Expert opinion: Despite some advancements in the development of tissue adhesives, there is still a demand to develop novel technologies in order to address unmet clinical needs, including low tensile strength in wet conditions, non-controllable polimerization and sub-optimal biocompatibility. Research trends focus on producing novel adhesive agents to remit these challenges. Examples include the development of biomimetic adhesives, externally activated adhesives, and multiple crosslinking strategies. Economic feasibility and biosafety are limiting factors for clinical implementation.
Collapse
Affiliation(s)
- Nicholas Gillman
- School of Medicine, Griffith University School of Medicine, Gold Coast, QLD, Australia.,Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - David Lloyd
- Griffith Centre for Orthopaedic Research and Engineering, Menzies Health Institute, Gold Coast, QLD, Australia
| | - Randy Bindra
- School of Medicine, Griffith University School of Medicine, Gold Coast, QLD, Australia.,Department of Plastic and Reconstructive Surgery, Gold Coast University Hospital, Southport, QLD, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Griffith Centre for Orthopaedic Research and Engineering, Menzies Health Institute, Gold Coast, QLD, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
14
|
Pandey N, Soto-Garcia LF, Liao J, Zimmern P, Nguyen KT, Hong Y. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci 2020; 8:1240-1255. [PMID: 31984389 PMCID: PMC7056592 DOI: 10.1039/c9bm01848d] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mussels are well-known for their extraordinary capacity to adhere onto different surfaces in various hydrophillic conditions. Their unique adhesion ability under water or in wet conditions has generated considerable interest towards developing mussel inspired polymeric systems that can mimic the chemical mechanisms used by mussels for their adhesive properties. Catechols like 3,4-dihydroxy phenylalanine (DOPA) and their biochemical interactions have been largely implicated in mussels' strong adhesion to various substrates and have been the centerpoint of research and development efforts towards creating superior tissue adhesives for surgical and tissue engineering applications. In this article, we review bioadhesion and adhesives from an engineering standpoint, specifically the requirements of a good tissue glue, the relevance that DOPA and other catechols have in tissue adhesion, current trends in mussel-inspired bioadhesives, strategies to develop mussel-inspired tissue glues, and perspectives for future development of these materials.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Luis F. Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
15
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|
16
|
Bactericidal effects of nanopatterns: A systematic review. Acta Biomater 2019; 83:29-36. [PMID: 30273746 DOI: 10.1016/j.actbio.2018.09.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/01/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
Abstract
We systematically reviewed the currently available evidence on how the design parameters of surface nanopatterns (e.g. height, diameter, and interspacing) relate to their bactericidal behavior. The systematic search of the literature resulted in 46 studies that satisfied the inclusion criteria of examining the bactericidal behavior of nanopatterns with known design parameters in absence of antibacterial agents. Twelve of the included studies also assessed the cytocompatibility of the nanopatterns. Natural and synthetic nanopatterns with a wide range of design parameters were reported in the included studies to exhibit bactericidal behavior. However, most design parameters were in the following ranges: heights of 100-1000 nm, diameters of 10-300 nm, and interspacings of <500 nm. The most commonly used type of nanopatterns were nanopillars, which could kill bacteria in the following range of design parameters: heights of 100-900 nm, diameters of 20-207 nm, and interspacings of 9-380 nm. The vast majority of the cytocompatibility studies (11 out of 12) showed no adverse effects of bactericidal nanopatterns with the only exception being nanopatterns with extremely high aspect ratios. The paper concludes with a discussion on the evidence available in the literature regarding the killing mechanisms of nanopatterns and the effects of other parameters including surface affinity of bacteria, cell size, and extracellular polymeric substance (EPS) on the killing efficiency. STATEMENT OF SIGNIFICANCE: The use of nanopatterns to kill bacteria without the need for antibiotics represents a rapidly growing area of research. However, the optimum design parameters to maximize the bactericidal behavior of such physical features need to be fully identified. The present manuscript provides a systematic review of the bactericidal nanopatterned surfaces. Identifying the effective range of dimensions in terms of height, diameter, and interspacings, as well as covering their impact on mammalian cells, has enabled a comprehensive discussion including the bactericidal mechanisms and the factors controlling the bactericidal efficiency. Overall, this review helps the readers have a better understanding of the state-of-the-art in the design of bactericidal nanopatterns, serving as a design guideline and contributing to the design of future experimental studies.
Collapse
|
17
|
Azizian S, Hadjizadeh A, Niknejad H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohydr Polym 2018; 202:315-322. [DOI: 10.1016/j.carbpol.2018.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
|
18
|
Chen J, Yang X, Huang L, Lai H, Gan C, Luo X. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv 2018; 25:1932-1942. [PMID: 30472899 PMCID: PMC6263111 DOI: 10.1080/10717544.2018.1477856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Combination chemotherapy is widely exploited for suppressing drug resistance and achieving synergistic anticancer efficacy in the clinic. In this paper, the nanostructured targeting methotrexate (MTX) plus pemetrexed (PMX) chitosan nanoparticles (CNPs) were developed by modifying methoxy polye (thylene glycol) (mPEG), in which PEGylation CNPs was used as stealth nanocarriers (PCNPs) and MTX was employed as a targeting ligand and chemotherapeutic agent as well. Studies were undertaken on human lung adenocarcinoma epithelial (A549) and Lewis lung carcinoma (LLC) cell lines, revealing the anti-tumor efficacy of nanoparticle drug delivery system. The co-delivery nanoparticles (MTX-PMX-PCNPs) had well-dispersed with sustained release behavior. Cell counting kit-8 (CCK8) has been used to measure A549 cell viability and the research showed that MTX-PMX-PCNPs were much more effective than free drugs when it came to the inhibition of growth and proliferation. Cell cycle assay by flow cytometry manifested that the MTX-PMX-PCNPs exhibited stronger intracellular taken up ability than free drugs at the same concentration. In vivo anticancer effect results indicated that MTX-PMX-PCNPs exhibited a significantly prolong blood circulation, more tumoral location accumulation, and resulted in a robust synergistic anticancer efficacy in lung cancer in mice. The results clearly demonstrated that such unique synergistic anticancer efficacy of co-delivery of MTX and PMX via stealth nanocarriers, providing a prospective strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen, P. R. China
| | - Xiaobing Yang
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, P. R. China
| | - Liuqing Huang
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Huixian Lai
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Chuanhai Gan
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Xuetao Luo
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
19
|
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Raju Saka
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Abraham J. Domb
- School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | - Wahid Khan
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
20
|
Zhu W, Chuah YJ, Wang DA. Bioadhesives for internal medical applications: A review. Acta Biomater 2018; 74:1-16. [PMID: 29684627 DOI: 10.1016/j.actbio.2018.04.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
Abstract
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have gained increasing popularity in different areas of clinical operations during the last three decades. Bioadhesives can be categorized into internal and external ones according to their application conditions. External bioadhesives are generally applied in topical medications such as wound closure and epidermal grafting. Internal bioadhesives are mainly used in intracorporal conditions with direct contact to internal environment including tissues, organs and body fluids, such as chronic organ leak repair and bleeding complication reduction. This review focuses on internal bioadhesives that, in contrast with external bioadhesives, emphasize much more on biocompatibility and adhesive ability to wet surfaces rather than on gluing time and intensity. The crosslinking mechanisms of present internal bioadhesives can be generally classified as follows: 1) chemical conjugation between reactive groups; 2) free radical polymerization by light or redox initiation; 3) biological or biochemical coupling with specificity; and 4) biomimetic adhesion inspired from natural phenomena. In this review, bioadhesive products of each class are summarized and discussed by comparing their designs, features, and applications as well as their prospects for future development. STATEMENT OF SIGNIFICANCE Despite the emergence of numerous novel bioadhesive formulations in recent years, thus far, the classification of internal and external bioadhesives has not been well defined and universally acknowledged. Many of the formulations have been proposed for treatment of several diseases even though they are not applicable for such conditions. This is because of the lack of a systematic standard or evaluation protocol during the development of a new adhesive product. In this review, the definition of internal and external bioadhesives is given for the first time, and with a focus on internal bioadhesives, the criteria of an ideal internal bioadhesive are adequately discussed; this is followed by the review of recently developed internal bioadhesives based on different gluing mechanisms.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yon Jin Chuah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637335, Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
21
|
Korde JM, Kandasubramanian B. Biocompatible alkyl cyanoacrylates and their derivatives as bio-adhesives. Biomater Sci 2018; 6:1691-1711. [DOI: 10.1039/c8bm00312b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyanoacrylate adhesives and their homologues have elicited interest over the past few decades owing to their applications in the biomedical sector, extending from tissue adhesives to scaffolds to implants to dental material and adhesives, because of their inherent biocompatibility and ability to polymerize solely with moisture, thanks to which they adhere to any substrate containing moisture such as the skin.
Collapse
Affiliation(s)
- Jay M. Korde
- Biocomposite Fabrication Lab
- Department of Metallurgical and Materials Engineering
- DIAT (DU)
- Ministry of Defence
- Pune-411025
| | | |
Collapse
|
22
|
Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1799-1808. [DOI: 10.1080/21691401.2017.1392970] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Afra Hadjizadeh
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Kim J, Bae WG, Kim YJ, Seonwoo H, Choung HW, Jang KJ, Park S, Kim BH, Kim HN, Choi KS, Kim MS, Choung PH, Choung YH, Chung JH. Directional Matrix Nanotopography with Varied Sizes for Engineering Wound Healing. Adv Healthc Mater 2017. [PMID: 28636203 DOI: 10.1002/adhm.201700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Topographic features play a crucial role in the regulation of physiologically relevant cell and tissue functions. Here, an analysis of feature-size-dependent cell-nanoarchitecture interactions is reported using an array of scaffolds in the form of uniformly spaced ridge/groove structures for engineering wound healing. The ridge and groove widths of nanopatterns are varied from 300 to 800 nm and the nanotopography features are classified into three size ranges: dense (300-400 nm), intermediate (500-600 nm), and sparse (700-800 nm). On these matrices, fibroblasts demonstrate a biphasic trend of cell body and nucleus elongation showing the maximum at intermediate feature density, whereas maximum migration speed is observed at the dense case with monotonic decrease upon increasing feature size. The directional organization of cell-synthesized fibronectin fibers can be regulated differently via the nanotopographical features. In an in vitro wound healing model, the covering rate of cell-free regions is maximized on the dense nanotopography and decreased with increasing feature size, showing direct correlation with the trend of migration speed. It is demonstrated that the properties of repaired tissue matrices in the process of wound healing may be controlled via the feature-size-dependent cell-nanoarchitecture interactions, which can be an important consideration for designing tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jangho Kim
- Department of Rural and Biosystems Engineering; Chonnam National University; Gwangju 61186 Republic of Korea
| | - Won-Gyu Bae
- School of Electrical Engineering; Soongsil University; Dongjak-Gu Seoul 06978 Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology; Ajou University School of Medicine; Suwon 443-721 Republic of Korea
| | - Hoon Seonwoo
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Seoul National University; Seoul 110-749 Republic of Korea
| | - Kyoung-Je Jang
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering; Chonnam National University; Gwangju 61186 Republic of Korea
| | - Bog Hee Kim
- Dental Research Institute; Seoul National University; Seoul 110-749 Republic of Korea
| | - Hong-Nam Kim
- Center for BioMicrosystems; Brain Science Institute; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group; Korea Basic Science Institute (KBSI); Daejeon 305-333 Republic of Korea
| | - Myung-Sun Kim
- Department of Orthopaedic Surgery; Chonnam National University College of Medicine; Gwangju 61469 Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Seoul National University; Seoul 110-749 Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology; Ajou University School of Medicine; Suwon 443-721 Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
24
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
25
|
A Facile Approach for the Mass Production of Submicro/Micro Poly (Lactic Acid) Fibrous Mats and Their Cytotoxicity Test towards Neural Stem Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8921316. [PMID: 27699177 PMCID: PMC5029109 DOI: 10.1155/2016/8921316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/30/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022]
Abstract
Despite many of the studies being conducted, the electrospinning of poly (lactic acid) (PLA), dissolved in its common solvents, is difficult to be continuously processed for mass production. This is due to the polymer solution droplet drying. Besides, the poor stretching capability of the polymer solution limits the production of small diameter fibers. To address these issues, we have examined the two following objectives: first, using an appropriate solvent system for the mass production of fibrous mats with fine-tunable fiber diameters; second, nontoxicity of the mats towards Neural Stem Cell (NSC). To this aim, TFA (trifluoroacetic acid) was used as a cosolvent, in a mixture with DCM (dichloromethane), and the solution viscosity, surface tension, electrical conductivity, and the continuity of the electrospinning process were compared with the solutions prepared with common single solvents. The binary solvent facilitated PLA electrospinning, resulting in a long lasting, stable electrospinning condition, due to the low surface tension and high conductivity of the binary-solvent system. The fiber diameter was tailored from nano to micro by varying effective parameters and examined by scanning electron microscopy (SEM) and image-processing software. Laminin-coated electrospun mats supported NSC expansion and spreading, as examined using AlamarBlue assay and fluorescent microscopy, respectively.
Collapse
|