1
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Atieh O, Azzi NMJ, Lteif GJ, Atieh NA, Germanos NY, Grandjean V, Yarkiner Z, Saliba Z, Khalife MF, Raad G. Paternal peri-conceptional physical activity and the risk of congenital heart disease in offspring: A case-control study. Andrology 2025; 13:34-44. [PMID: 38605599 PMCID: PMC11635594 DOI: 10.1111/andr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Genetic and environmental factors have been shown to contribute to the development of congenital heart disease (CHD). To date, the focus of scientific articles has primarily centered on genetics and maternal environmental factors, with comparatively less attention given to paternal risk factors. OBJECTIVES This study aims to investigate the potential association between paternal pre-conceptional physical activity levels (PA), along with paternal peri-conceptional smoking and alcohol consumption, and the risk of CHD in offspring. MATERIALS AND METHODS An observational case-control study was conducted in Lebanon, with 279 participants, aiming to investigate potential risk factors for CHD. We included children with confirmed CHD, born between 2012 and 2022. Controls born in the same timeframe were selected randomly from the general population using online questionnaire forms. Mean age of children included was 6 years old (0-10). The pre-conceptional PA was assessed using the Global Physical Activity Questionnaire validated in Arabic. In addition, paternal smoking, alcohol consumption, and maternal risk factors were collected. RESULTS The study included 128 CHD cases (45.9%) and their parents, as well as 151 healthy infants (54.1%) and their parents. There were no statistically significant variations in the alcohol consumption noted between the fathers in the case and control groups (p = 0.18). The paternal involvement in recreational-related PA during the peri-conception period was associated with a reduced risk of the CHD development in offspring by 46.9% (OR = 0.531, 95% CI: 0.301-0.936, p = 0.029). Additionally, increasing paternal total sitting time by 1 h above the average, which was approximately 260 min (4 h), increased the risk of CHD in offspring by 0.4% (p = 0.001). Moreover, paternal smoking exhibited an apparent association with a 56% increased risk of offspring developing CHD, notwithstanding that the confidence intervals included the null (OR = 1.56, 95% CI: 0.86-2.8, p = 0.136). DISCUSSION AND CONCLUSION This observational study is the first to report a potential association between paternal PA, and CHD in offspring. This study aligns with previous reports, advocating for the paternal engagement in PA and the adoption of healthy lifestyle habits, especially during the critical stages of conception. Such practices are strongly recommended to enhance fertility and promote optimal health for offspring. However, due to the subjectivity in reporting PA and lack of molecular proof, additional prospective and molecular studies are required to validate these findings.
Collapse
Affiliation(s)
- Ornina Atieh
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| | - Nohad Maria J. Azzi
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| | - Georges J. Lteif
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| | - Ninar A. Atieh
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| | - Nadim Y. Germanos
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| | - Valérie Grandjean
- Inserm, C3M, Team Control of Gene Expression (10)Université Côte d'AzurNiceFrance
| | - Zalihe Yarkiner
- Department of Basic Sciences and HumanitiesFaculty of Arts and SciencesNorthern Cyprus via MersinCyprus International UniversityMersinTurkey
| | - Zakhia Saliba
- Department of Pediatric CardiologyHotel Dieu de France University Medical CenterSaint Joseph UniversityAlfred Naccache BoulevardAchrafiehBeirutLebanon
| | - Marie‐Claude Fadous Khalife
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
- Pediatrics DepartmentNotre Dame des Secours University Hospital CenterJbeilLebanon
| | - Georges Raad
- School of Medicine and Medical SciencesHoly Spirit University of KaslikJouniehLebanon
| |
Collapse
|
3
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Chen Y, Pan Y, Liu L, Guo Y, Jin L, Ren A, Wang L. The mediating role of abnormal ZEB1 methylation in the association between nickel exposure and non-syndromic orofacial cleft. Reprod Toxicol 2024; 130:108728. [PMID: 39326548 DOI: 10.1016/j.reprotox.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Our previous study found a positive relationship between fetal nickel exposure and the risk of OFCs. The teratogenic mechanism of nickel is not clear. In this study, we aim to examine the mediating effect of DNA methylation on the association of nickel(Ni) exposure with NSOFC in fetuses. 10 cases and 10 controls was used for screening target gene by Illumina Infinium Methylation EPIC(850k) BeadChip. 36 cases and 78 controls was conducted to determine DNA methylation level of selected gene in umbilical cord blood by Mass spectrometry assay. Mediation analysis was used to evaluate the potential mediating effect of selected gene methylation on the relation between concentrations of Ni and the risk for NSOFC. In the discovery stage, ZEB1 gene was identified to be hypermethylated in both nickel exposure and NSOFC group for validation. In the verification stage, the overall average methylation level of ZEB1 was significant higher in NSOFC cases(median = 8.70, interquartile range(IQR): 5.75-11.53) as compared to controls (median = 5.35, IQR: 4.30-7.78). The risk for NSOFC was increased by 1.43-fold with hypermethylation of ZEB1. Significant correlation was observed between concentrations of Ni in umbilical cord and methylation level of ZEB1. The hypermethylation of ZEB1 had a mediating effect by 20.47 % of total effect of Ni on NSOFC risk. Hypermethylation of ZEB1 is associated with the risk for NSOFC and may partially explain the association between Ni exposure and NSOFC risk. Our findings provide new insights into the epigenetic mechanisms underlying NSOFC and suggesting potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yaquan Pan
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lijun Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
5
|
Zhang F, Qi L, Zhao M, Han S, Zhang H, Wang G. Global research landscape on the genetics of congenital heart disease: A bibliometric and visualized analysis via VOSviewer and CiteSpace. Medicine (Baltimore) 2024; 103:e40261. [PMID: 39470501 PMCID: PMC11521071 DOI: 10.1097/md.0000000000040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Genetic factors play a significant role in the development of congenital heart disease (CHD). Many studies on the genetics of CHD have been published worldwide; however, no research has assessed and mapped the global research landscape of these studies. This bibliometric and visualized study aimed to delineate research hotspots and trends in the field of CHD genetics. Scientific papers on the genetics of CHD from January 1, 1950, to December 31, 2023, were obtained by searching the Web of Science Core Collection. The bibliometric metadata of each chosen research paper were extracted, analyzed, and visualized using tools such as Microsoft Excel 2021, VOSviewer, and CiteSpace. The final analysis included 5317 papers discussing the genetics of CHD. The countries and journals that published the highest number of papers were the United States (n = 2118), and American Journal of Medical Genetics Part A (n = 332), respectively. In addition to CHD and genetics, keywords such as tetralogy of Fallot, ventricular septal defect, and atrial septal defect appeared most frequently among 8365 keywords. Eight clusters were formed to categorize the keywords. Keywords such as case-control study, whole genome sequencing, and whole exome sequencing in clusters 6, 7, and 8, respectively, had the latest average publication year among all clusters. To the best of our knowledge, this is the first bibliometric analysis of CHD genetics studies. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect are global research topics. The interactions between environmental and genetic factors in the pathogenesis of CHD, genetic etiology of CHD-associated pulmonary arterial hypertension, and molecular genetics of CHD via high-throughput genomic technology are possible areas of future research on the genetics of CHD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lei Qi
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mingxue Zhao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shuming Han
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haoran Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Guangxin Wang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
- Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
6
|
Liang J, He X, Wang Y. Cardiomyocyte proliferation and regeneration in congenital heart disease. PEDIATRIC DISCOVERY 2024; 2:e2501. [PMID: 39308981 PMCID: PMC11412308 DOI: 10.1002/pdi3.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Despite advances in prenatal screening and a notable decrease in mortality rates, congenital heart disease (CHD) remains the most prevalent congenital disorder in newborns globally. Current therapeutic surgical approaches face challenges due to the significant rise in complications and disabilities. Emerging cardiac regenerative therapies offer promising adjuncts for CHD treatment. One novel avenue involves investigating methods to stimulate cardiomyocyte proliferation. However, the mechanism of altered cardiomyocyte proliferation in CHD is not fully understood, and there are few feasible approaches to stimulate cardiomyocyte cell cycling for optimal healing in CHD patients. In this review, we explore recent progress in understanding genetic and epigenetic mechanisms underlying defective cardiomyocyte proliferation in CHD from development through birth. Targeting cell cycle pathways shows promise for enhancing cardiomyocyte cytokinesis, division, and regeneration to repair heart defects. Advancements in human disease modeling techniques, CRISPR-based genome and epigenome editing, and next-generation sequencing technologies will expedite the exploration of abnormal machinery governing cardiomyocyte differentiation, proliferation, and maturation across diverse genetic backgrounds of CHD. Ongoing studies on screening drugs that regulate cell cycling are poised to translate this nascent technology of enhancing cardiomyocyte proliferation into a new therapeutic paradigm for CHD surgical interventions.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
8
|
Tournoy TK, Moons P, Daelman B, De Backer J. Biological Age in Congenital Heart Disease-Exploring the Ticking Clock. J Cardiovasc Dev Dis 2023; 10:492. [PMID: 38132660 PMCID: PMC10743752 DOI: 10.3390/jcdd10120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Over the past 50 years, there has been a major shift in age distribution of patients with congenital heart disease (CHD) thanks to significant advancements in medical and surgical treatment. Patients with CHD are, however, never cured and face unique challenges throughout their lives. In this review, we discuss the growing data suggesting accelerated aging in this population. Adults with CHD are more often and at a younger age confronted with age-related cardiovascular complications such as heart failure, arrhythmia, and coronary artery disease. These can be related to the original birth defect, complications of correction, or any residual defects. In addition, and less deductively, more systemic age-related complications are seen earlier, such as renal dysfunction, lung disease, dementia, stroke, and cancer. The occurrence of these complications at a younger age makes it imperative to further map out the aging process in patients across the spectrum of CHD. We review potential feasible markers to determine biological age and provide an overview of the current data. We provide evidence for an unmet need to further examine the aging paradigm as this stresses the higher need for care and follow-up in this unique, newly aging population. We end by exploring potential approaches to improve lifespan care.
Collapse
Affiliation(s)
- Tijs K. Tournoy
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Philip Moons
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
- Institute of Health and Care Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7700, South Africa
| | - Bo Daelman
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
| | - Julie De Backer
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
10
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. Hum Genomics 2023; 17:92. [PMID: 37803336 PMCID: PMC10559462 DOI: 10.1186/s40246-023-00540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John P Woodhouse
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Michel S, Atmakuri A, von Ehrenstein OS. Prenatal exposure to ambient air pollutants and congenital heart defects: An umbrella review. ENVIRONMENT INTERNATIONAL 2023; 178:108076. [PMID: 37454629 DOI: 10.1016/j.envint.2023.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollutants has been linked to congenital heart defects (CHD), but findings of existing systematic reviews have been mixed. OBJECTIVE To assess the epidemiological evidence on associations between prenatal exposure to ambient air pollutants and CHD subtypes, based on a systematic overview of reviews ("umbrella review"). METHODS We conducted a systematic search for reviews assessing associations between prenatal exposure to criteria air pollutants and CHD. The risk of bias was evaluated using the Risk of Bias in Systematic Reviews (ROBIS) tool. The certainty of the systematic review findings was graded using the Navigation Guide methodology. RESULTS We identified eleven systematic reviews, including eight with meta-analyses, assessing in total 35 primary studies of prenatal exposure to criteria air pollutants and various CHD subtypes. The certainty of the findings of four meta-analyses indicating an increased risk for coarctation of the aorta associated with nitrogen dioxide exposure was rated as moderate. The certainty of findings indicating positive, inverse, or null associations for other pollutant-subtype combinations was rated as very low to low, based on low precision and high statistical heterogeneity of summary odds ratios (SOR), substantial inconsistencies between review findings, and methodological limitations of the systematic reviews. DISCUSSION The inconsistent findings and high statistical heterogeneity of many SOR of the included systematic reviews may partly be traced to differences in methodological approaches, and the risk of bias across included reviews (e.g., inclusion criteria, systematic search strategies, synthesis methods) and primary studies (e.g., exposure assessment, diagnostic criteria). Adherence to appropriate systematic review guidelines for environmental health research, as well as rigorous evaluation of risk of bias in primary studies, are essential for future risk assessments and policy-making. Still, our findings suggest that prenatal exposure to ambient air pollutants may increase risks for at least some CHD subtypes.
Collapse
Affiliation(s)
- Sophie Michel
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA.
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289417. [PMID: 37205408 PMCID: PMC10187438 DOI: 10.1101/2023.05.02.23289417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS) but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. Methods We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: 1) 45 DS-CHD (27 female, 18 male) and 2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD vs DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS vs typical development (TD) WGBS NDBS samples. Results We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3,938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS vs TD samples. Conclusions A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - John P Woodhouse
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
14
|
Fennell LJ, Hartel G, McKeone DM, Bond CE, Kane A, Leggett BA, Patch AM, Whitehall VL. Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis. CELL REPORTS METHODS 2022; 2:100323. [PMID: 36452869 PMCID: PMC9701610 DOI: 10.1016/j.crmeth.2022.100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Researching the murine epigenome in disease models has been hampered by the lack of appropriate and cost-effective DNA methylation arrays. Here we perform a comprehensive, comparative analysis between the Mouse Methylation BeadChip (MMB) and reduced-representation bisulfite sequencing (RRBS) in two murine models of colorectal carcinogenesis. We evaluate the coverage, variability, and ability to identify differential DNA methylation of RRBS and MMB. We show that MMB is an effective tool for profiling the murine methylome that performs comparably with RRBS, identifying similar differentially methylated pathways. Although choice of technology is experiment dependent and will be predicated on the underlying biology being probed, these analyses provide insights into the relative strengths and weaknesses of each approach.
Collapse
Affiliation(s)
- Lochlan J. Fennell
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, 19 Innovation Walk, Clayton, VIC, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Gunter Hartel
- Statistics Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Diane M. McKeone
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Catherine E. Bond
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Alexandra Kane
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
- Conjoint Internal Medical Laboratories, Pathology Queensland, Brisbane, QLD, Australia
| | - Barbara A. Leggett
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
- Department of Gastroenterology and Hepatology, Royal Brisbane and Womens’ Hospital, Brisbane, QLD, Australia
| | - Ann-Marie Patch
- Clinical Genomics Laboratory, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Vicki L.J. Whitehall
- Conjoint Gastroenterology Laboratory, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
- Conjoint Internal Medical Laboratories, Pathology Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Comparison of
DNA
methylation patterns across tissue types in infants with tetralogy of Fallot. Birth Defects Res 2022; 114:1101-1111. [DOI: 10.1002/bdr2.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
|
16
|
miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:718-732. [PMID: 36090753 PMCID: PMC9439965 DOI: 10.1016/j.omtn.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Aberrant DNA methylation is associated with diabetes, but the precise regulatory events that control the levels and activity of DNA methyltransferases (DNMTs) is not well understood. Here we show that miR-539-5p targets Dnmt3b and regulates its cellular levels. miR-539-5p and Dnmt3b show inverse patterns of expression in skeletal muscle of diabetic mice. By binding to the 3′ UTR of Dnmt3b, miR-539-5p downregulates its levels in C2C12 cells and in human primary skeletal muscle cells. miR-539-5p-Dnmt3b interaction regulates Srebf1 transcription by altering methylation at CpG islands within Srebf1 in C2C12 cells. Dnmt3b inhibition alone was sufficient to upregulate Srebf1 transcription. In vivo antagonism of miR-539-5p in normal mice induced hyperglycemia and hyperinsulinemia and impaired oral glucose tolerance. These mice had elevated Dnmt3b and decreased Srebf1 levels in skeletal muscle. db/db mice injected with miR-539-5p mimics showed improved circulatory glucose and cholesterol levels. Oral glucose tolerance improved together with normalization of Dnmt3b and Srebf1 levels in skeletal muscle. Our results support a critical role of miR-539-5p and Dnmt3b in aberrant skeletal muscle metabolism during diabetes by regulating Srebf1 transcription; modulating the miR-539-5p-Dnmt3b axis might have therapeutic potential for addressing altered skeletal muscle physiology during insulin resistance and type 2 diabetes.
Collapse
|
17
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
18
|
Liu J, Wu Y, Sun H, Liu X, Gu X, Zhao Y, Zhang Y, Han J, He Y. Placental DNA Methylation Abnormalities in Prenatal Conotruncal Heart Defects. Front Genet 2022; 13:878063. [PMID: 35646082 PMCID: PMC9139681 DOI: 10.3389/fgene.2022.878063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aims to characterize the abnormal changes in placental DNA methylation associated with conotruncal heart defects (CTDs) and the level of methylation as epigenetic biomarkers for CTDs detection. Methods: This was a prospective study involving 28 fetuses diagnosed with CTDs in the second trimester at Beijing Anzhen Hospital between September 2020 and June 2021. These cases were classified into four groups based on their subtypes. 12 normal fetuses were used as controls. Placental tissue was obtained after inducing labor in fetuses. To identify differential methylation sites (DMSs) and regions (DMRs) in cases vs. controls, an Infinium Human Methylation 850 k bead chip was used. Differential methylation was assessed by comparing the β-values for individual CpG loci. Based on the p-value (<0.05), the most discriminating CpG sites were identified. The area under the receiver-operating-characteristics curve (AUC) was used to determine the predictive accuracy of CpG loci with significant methylation changes for CTDs. The function of genes was assessed through KEGG enrichment analysis, Gene Ontology (GO) analysis, and KEGG pathway analysis. Results: In comparison to the control group, the DNA methylation of the placental tissue is significantly different in fetuses with CTDs. We identified the most significantly different methylated loci and they demonstrated excellent individual predictive accuracy for CTDs detection with AUC >0.9 in cases compared with controls. HOXD9, CNN1, NOTCH1, and ECE1 were identified as CTDs-detection candidate genes. Conclusion Our study established the abnormal changes in placental methylation associated with CTDs and potential epigenetic biomarkers for CTDs detection.
Collapse
Affiliation(s)
- Jingjing Liu
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuduo Wu
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hairui Sun
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaowei Liu
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Gu
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Zhao
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiancheng Han
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yihua He
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Carreras-Gallo N, Cáceres A, Balagué-Dobón L, Ruiz-Arenas C, Andrusaityte S, Carracedo Á, Casas M, Chatzi L, Grazuleviciene R, Gutzkow KB, Lepeule J, Maitre L, Nieuwenhuijsen M, Slama R, Stratakis N, Thomsen C, Urquiza J, Wright J, Yang T, Escaramís G, Bustamante M, Vrijheid M, Pérez-Jurado LA, González JR. The early-life exposome modulates the effect of polymorphic inversions on DNA methylation. Commun Biol 2022; 5:455. [PMID: 35550596 PMCID: PMC9098634 DOI: 10.1038/s42003-022-03380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10−22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome. Analysis of the relationship between presence of common DNA sequence inversions and DNA methylation patterns suggests a role for environmental exposures (such as food intake) in mediating inversion state-specific methylation patterns.
Collapse
Affiliation(s)
| | - Alejandro Cáceres
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | | | - Carlos Ruiz-Arenas
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Johanna Lepeule
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Remy Slama
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Geòrgia Escaramís
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain.,Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona, Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
20
|
Vijay A, Jha PK, Parveen S, Goel S, Prabhakar A, Sharma S, Kumar B, Chatterjee T, Bajaj N, Nair V, Sharma M, Ashraf MZ. Aberrant promoter hypermethylation regulates thrombomodulin in high altitude induced deep vein thrombosis. Thromb Res 2022; 215:5-13. [DOI: 10.1016/j.thromres.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
|
21
|
Epigenetic Effect of Maternal Methyl-Group Donor Intake on Offspring’s Health and Disease. Life (Basel) 2022; 12:life12050609. [PMID: 35629277 PMCID: PMC9145757 DOI: 10.3390/life12050609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Maternal exposure to some dietary and environmental factors during embryonic development can affect offspring’s phenotype and, furthermore, the risk of developing diseases later in life. One potential mechanism responsible for this early programming may be the modification of the epigenome, such as DNA methylation. Methyl-group donors are essential for DNA methylation and are shown to have an important role in fetal development and later health. The main goal of the present review is to summarize the available literature data on the epigenetic effect (DNA methylation) of maternal methyl-group donor availability on reproductivity, perinatal outcome, and later health of the offspring. In our literature search, we found evidence for the association between alterations in DNA methylation patterns caused by different maternal methyl-group donor (folate, choline, methionine, betaine) intake and reproductivity, birth weight, neural tube defect, congenital heart defect, cleft lip and palate, brain development, and the development of obesity and associated non-communicable diseases in later life. We can conclude that maternal methyl-group donor availability could affect offspring’s health via alterations in DNA methylation and may be a major link between early environmental exposure and the development of diseases in the offspring. However, still, further studies are necessary to confirm the associations and causal relationships.
Collapse
|
22
|
Abstract
Embryonic heart development is an intricate process that mainly involves morphogens, transcription factors, and cardiac genes. The precise spatiotemporal expression of these genes during different developmental stages underlies normal heart development. Thus, mutation or aberrant expression of these genes may lead to congenital heart disease (CHD). However, evidence demonstrates that the mutation of genes accounts for only a small portion of CHD cases, whereas the aberrant expression regulated by epigenetic modification plays a predominant role in the pathogenesis of CHD. In this review, we provide essential knowledge on the aberrant epigenetic modification involved in the pathogenesis of CHD. Then, we discuss recent advances in the identification of novel epigenetic biomarkers. Last, we highlight the epigenetic roles in some adverse intrauterine environment‐related CHD, which may help the prevention, diagnosis, and treatment of these kinds of CHD.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
- Department of Biochemistry & Molecular Biology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
23
|
Joshi RO, Kukshal P, Chellappan S, Guhathakurta S. "The study of expression levels of DNA methylation regulators in patients affected with congenital heart defects (CHDs)". Birth Defects Res 2022; 114:228-237. [PMID: 35191222 DOI: 10.1002/bdr2.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenial heart defects (CHDs) have multifactorial etiology with complex interplay of genetic and environmental factors. Environmental impact can have epigenetic mechanism of CHD development. Many studies have reported the causal association between CHD and distinct DNA methylation profile which is one of the key epigenetic events, which has vital role in normal embryonic development. The products of DNMT1, DNMT3A, DNMT3B, and MBD2 are important regulators of DNA methylation process. Changes in the expression of these genes are implicated in congenital structural cardiac defects. Hence, in this proof-of-concept study, we have compared the expression levels of these genes in the blood samples of healthy controls and CHD cases while investigating the etiology of CHD. METHODS In this study with 48 CHD cases and 47 healthy controls, total RNA was isolated from the whole blood samples using TRI reagent. Quantitative RT PCR (qRT-PCR) was used to analyze the mRNA levels of DNMT1, DNMT3A, DNMT3B, and MBD2. The expression levels have been analyzed by relative quantification. RESULTS We observed that DNMT3B (fold change = -2.563; p = .0018) and DNMT3A (fold change = -2.169; p = .05) were significantly downregulated in CHD patients, whereas the expression of DNMT1 and MBD2 was not significantly different between cases and controls. CONCLUSIONS Lower expression of de novo methyltransferases, namely, DNMT3B and DNMT3A in CHD cases, may be an important contributor to the mechanism of CHD pathogenesis. Further studies with age-matched controls and analysis of global DNA methylation profile are required to investigate the proposed causal association.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Subramanian Chellappan
- Department of Anaesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, India
| | - Soma Guhathakurta
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| |
Collapse
|
24
|
Tian G, He L, Gu R, Sun J, Chen W, Qian Y, Ma X, Yan W, Zhao Z, Xu Z, Suo M, Sheng W, Huang G. CpG site hypomethylation at ETS1‑binding region regulates DLK1 expression in Chinese patients with Tetralogy of Fallot. Mol Med Rep 2022; 25:93. [PMID: 35059744 PMCID: PMC8809049 DOI: 10.3892/mmr.2022.12609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart malformation accounting for ~10% of cases. Although the pathogenesis of TOF is complex and largely unknown, epigenetics plays a huge role, specifically DNA methylation. The protein δ like non-canonical Notch ligand 1 (DLK1) gene encodes a non-canonical ligand of the Notch signaling pathway, which is involved in heart development. However, the epigenetic mechanism of DLK1 in the pathogenesis of TOF is yet to be elucidated. Therefore, the present study aimed to clarify its specific mechanism. In this study, immunohistochemistry was used to detect the protein expression of DLK1 and the methylation status of the DLK1 promoter was measured via bisulfite sequencing PCR. Dual-luciferase reporter assays were performed to examine the influence of transcription factor ETS proto-oncogene 1 (ETS1) on DLK1 gene expression. The electrophoretic mobility shift assay and chromatin immunoprecipitation assay, both in vivo and in vitro, were used to verify the binding of the ETS1 transcription factor to the DLK1 promoter as well as the influence of methylation status of DLK1 promoter on this binding affinity. The expression of DLK1 in the right ventricular outflow tract was significantly lower in patients with Tetralogy of Fallot (TOF) than that in controls (P<0.001). Moreover, the methylation level of CpG site 10 and CpG site 11 in the DLK1_R region was significantly decreased in TOF cases compared with controls (P<0.01). The integral methylation levels of DLK1_R and the methylation status of the CpG site 11 were both positively associated with DLK1 protein expression in TOF cases. ETS1 was found to inhibit DLK1 transcriptional activity by binding to the CpG site 11 and this affinity could be influenced by the methylation level of the DLK1 promoter. These findings demonstrated that the hypomethylation of the DLK1 promoter could increase the binding affinity of ETS1 transcription factor, which in turn inhibited DLK1 gene transcriptional activity and contributed to the development of TOF.
Collapse
Affiliation(s)
- Guixiang Tian
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Lili He
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Ruoyi Gu
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Jingwei Sun
- Pediatrics Department, Bengbu First People's Hospital, Bengbu, Anhui 233000, P.R. China
| | - Weicheng Chen
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Yanyan Qian
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Xiaojing Ma
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Weili Yan
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zhenshan Zhao
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Ziqing Xu
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Meijiao Suo
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Guoying Huang
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
25
|
Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13235993. [PMID: 34885103 PMCID: PMC8657426 DOI: 10.3390/cancers13235993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy. The cause of chemoresistance is still largely unknown and may be due to epigenetics modifications that are driving HGSOC metastasis and treatment resistance. The identification of epigenetic changes in chemoresistant HGSOC enables the development of epigenetic modulating drugs that may be used to improve outcomes. Several epigenetic modulating drugs have displayed promise as drug targets for HGSOC, such as demethylating agents azacitidine and decitabine. Others, such as histone deacetylase inhibitors and miRNA-targeting therapies, demonstrated promising preclinical results but resulted in off-target side effects in clinical trials. This article reviews the epigenetic modifications identified in chemoresistant HGSOC and clinical trials utilizing epigenetic therapies in HGSOC.
Collapse
|
26
|
Banerjee S, Prabhu Basrur N, Rai PS. Omics technologies in personalized combination therapy for cardiovascular diseases: challenges and opportunities. Per Med 2021; 18:595-611. [PMID: 34689602 DOI: 10.2217/pme-2021-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primary purpose of 'omics' technologies is to understand the intricacy of genomics, proteomics, metabolomics and other molecular mechanisms to reveal the complex traits of human diseases. The significant use of omics technologies and their applications in medicine gear up the study of the pathogenesis of several disorders. The detection of biomarkers in the early onset of diseases is challenging; still, omics can discover novel molecular mechanisms and biomarkers. In this review, the different types of omics and their technologies are explicated and aimed to provide their emerging applications in cardiovascular precision medicine. These technologies significantly impact optimizing medical treatment for individuals to reach a higher level in precision medicine.
Collapse
Affiliation(s)
- Saradindu Banerjee
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Navya Prabhu Basrur
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
27
|
Jiang W, Xie W, Ni B, Zhou H, Liu Z, Li X. First trimester exposure to ambient gaseous air pollutants and risk of orofacial clefts: a case-control study in Changsha, China. BMC Oral Health 2021; 21:530. [PMID: 34654409 PMCID: PMC8518237 DOI: 10.1186/s12903-021-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background A growing body of studies have investigated the association between air pollution exposure during early pregnancy and the risk of orofacial clefts, but these studies put more emphasis on particulate matter and reported inconsistent results, while research on the independent effects of gaseous air pollutants on orofacial clefts has been quite inadequate, especially in China. Methods A case–control study was conducted in Changsha, China from 2015 to 2018. A total of 446 cases and 4460 controls were included in the study. Daily concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 during the first trimester of pregnancy were assigned to each subject using the nearest monitoring station method. Multivariate logistic regression models were applied to evaluate the associations of monthly average exposure to gaseous air pollutants with orofacial clefts and its subtypes before and after adjusting for particulate matter. Variance inflation factors (VIFs) were used to determine if the effects of gaseous air pollutants could be independent of particulate matter. Results Increase in CO, NO2 and SO2 significantly increased the risk of cleft lip with or without cleft palate (CL/P) in all months during the first trimester of pregnancy, with aORs ranging from 1.39 to 1.48, from 1.35 to 1.61 and from 1.22 to 1.35, respectively. The risk of cleft palate only (CPO) increased with increasing NO2 exposure levels in the first trimester of pregnancy, with aORs ranging from 1.60 to 1.66. These effects sustained and even exacerbated after adjusting for particulate matter. No significant effect of O3 was observed. Conclusions Our study suggested that maternal exposure to CO, NO2, and SO2 during the first trimester of pregnancy might contribute to the development of orofacial clefts, and the associations were potentially independent of particulate matter. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01876-7.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China
| | - Wanqin Xie
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Bin Ni
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Haiyan Zhou
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China
| | - Zhiyu Liu
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China.
| | - Xingli Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China.
| |
Collapse
|
28
|
Zhou J, Xiong Y, Dong X, Wang H, Qian Y, Ma D, Li X. Genome-wide methylation analysis reveals differentially methylated CpG sites and altered expression of heart development-associated genes in fetuses with cardiac defects. Exp Ther Med 2021; 22:1032. [PMID: 34373718 PMCID: PMC8343574 DOI: 10.3892/etm.2021.10464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
DNA methylation, as an epigenetic mechanism, has a vital role in heart development. An increasing number of studies have investigated aberrant DNA methylation in pediatric or adult heart samples from patients with congenital heart defects (CHD). Placenta tissue, umbilical cord blood, or newborn blood have also been used to detect DNA methylation biomarkers for CHD. However, few studies have compared the methylation levels in fetal heart tissue with cardiac defects with that in normal controls. The present study conducted an integrative whole-genome and CpG site-specific DNA methylation analysis of fetal heart samples from 17 isolated cardiac defect cases, 14 non-isolated cardiac defect cases, and 22 controls with normal hearts, using methylated DNA immunoprecipitation microarray and MassARRAY EpiTYPER assays. Expression of genes adjacent to differentially methylated regions (DMRs) was measured by RT-qPCR and western blot analysis. The results revealed that fetuses with cardiac defects presented global hypomethylation. Genomic analysis of DMRs revealed that a proportion of DMRs were located in exons (12.4%), distal intergenic regions (11.14%), and introns (8.97%). Only 55.7% of DMRs were observed at promoter regions. Functional enrichment analysis for genes adjacent to these DMRs revealed that hypomethylated genes were involved in embryonic heart tube morphogenesis and immune-related regulation functions. Intergenic hypermethylation of EGFR and solute carrier family 19 member 1 (SLC19A1), and intragenic hypomethylation of NOTCH1 were validated in fetal heart tissues with cardiac defects. Only SLC19A1 expression was significantly decreased at the mRNA level, while EGFR, NOTCH1, and SLC19A1 expression were all significantly decreased at the protein level. In conclusion, the present study demonstrated that fetal cardiac defects may be associated with alterations in regional and single CpG site methylation outside of promoter regions, resulting in differentiated expression of corresponding genes associated with heart development. These results present new insights into the epigenetic mechanisms underlying abnormal heart development.
Collapse
Affiliation(s)
- Jizi Zhou
- Department of Prenatal Diagnosis and Fetal Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Yu Xiong
- Department of Prenatal Diagnosis and Fetal Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Huijun Wang
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Yanyan Qian
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xiaotian Li
- Department of Prenatal Diagnosis and Fetal Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,The Shanghai Key Laboratory of Birth Defects, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
29
|
Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling. J Genet 2021. [DOI: 10.1007/s12041-021-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Zhang X, Gao Y, Zhang X, Zhang X, Xiang Y, Fu Q, Wang B, Xu Z. FGD5-AS1 Is a Hub lncRNA ceRNA in Hearts With Tetralogy of Fallot Which Regulates Congenital Heart Disease Genes Transcriptionally and Epigenetically. Front Cell Dev Biol 2021; 9:630634. [PMID: 34046402 PMCID: PMC8144506 DOI: 10.3389/fcell.2021.630634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 01/19/2023] Open
Abstract
Heart development requires robust gene regulation, and the related disruption could lead to congenital heart disease (CHD). To gain insights into the regulation of gene expression in CHD, we obtained the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in 22 heart tissue samples with tetralogy of Fallot (TOF) through strand-specific transcriptomic analysis. Using a causal inference framework based on the expression correlations and validated microRNA (miRNA)–lncRNA–mRNA evidences, we constructed the competing endogenous RNA (ceRNA)-mediated network driven by lncRNAs. Four lncRNAs (FGD5-AS1, lnc-GNB4-1, lnc-PDK3-1, and lnc-SAMD5-1) were identified as hub lncRNAs in the network. FGD5-AS1 was selected for further study since all its targets were CHD-related genes (NRAS, PTEN, and SMAD4). Both FGD5-AS1 and SMAD4 could bind with hsa-miR-421, which has been validated using dual-luciferase reporter assays. Knockdown of FGD5-AS1 not only significantly reduced PTEN and SMAD4 expression in HEK 293 and the fetal heart cell line (CCC-HEH-2) but also increased the transcription of its interacted miRNAs in a cell-specific way. Besides ceRNA mechanism, RNAseq and ATACseq results showed that FGD5-AS1 might play repression roles in heart development by transcriptionally regulating CHD-related genes. In conclusion, we identified a ceRNA network driven by lncRNAs in heart tissues of TOF patients. Furthermore, we proved that FGD5-AS1, one hub lncRNA in the TOF heart ceRNA network, regulates multiple genes transcriptionally and epigenetically.
Collapse
Affiliation(s)
- Xingyu Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqian Gao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Wang J, Ma X, Zhang Q, Chen Y, Wu D, Zhao P, Yu Y. The Interaction Analysis of SNP Variants and DNA Methylation Identifies Novel Methylated Pathogenesis Genes in Congenital Heart Diseases. Front Cell Dev Biol 2021; 9:665514. [PMID: 34041244 PMCID: PMC8143053 DOI: 10.3389/fcell.2021.665514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital heart defect (CHD) is a rare and complicated disease with a high mortality rate. Its etiology remains unclear and includes many aspects. DNA methylation has been indicated to be involved in heart development in the early stage of life, and aberrant methylation level was related to CHDs. This study provides the first evidence of the cross talk of SNP variants and DNA methylation in clarifying CHD underlying genomic cause. We gathered whole exome sequencing (WES) data for Group 1 consisting of patients with PA (n = 78), TOF (n = 20), TAPVC (n = 78), and PDA (n = 40), and 100 healthy children as control group. Rare non-synonymous mutations and novel genes were found and highlighted. Meanwhile, we carried out the second analysis of DNA methylation data from patients with PA (n = 3), TAPVC (n = 3), TOF (n = 3), and PDA (n = 2), and five healthy controls using 850 K array in Group 2. DNA methylation was linked to WES data, and we explored an obvious overlap of hyper/hypomethylated genes. Next, we identified some candidate genes by Fisher’s exact test and Burden analysis; then, those methylated genes were figured out by the criteria of the mutation located in the CpG islands of the genome, differential methylation sites (DMS), and DNA methylation quantitative trait loci (meQTLs) in the database, respectively. Also, the interaction of differentially methylated candidate genes with known CHD pathogenetic genes was depicted in a molecular network. Taken together, our findings show that nine novel genes (ANGPTL4, VEGFA, PAX3, MUC4, HLA-DRB1, TJP2, BCR, PKD1, and HK2) in methylation level are critical to CHD and reveal a new insight into the molecular pathogenesis of CHD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric, Yangpu District Shidong Hospital, Shanghai, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin Ma
- Department of Pediatric, Yangpu District Shidong Hospital, Shanghai, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wu
- Department of Pediatric, Yangpu District Shidong Hospital, Shanghai, China
| | - Pengjun Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021; 13:93. [PMID: 33902696 PMCID: PMC8077695 DOI: 10.1186/s13148-021-01077-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is a common structural birth defect worldwide, and defects typically occur in the walls and valves of the heart or enlarged blood vessels. Chromosomal abnormalities and genetic mutations only account for a small portion of the pathogenic mechanisms of CHD, and the etiology of most cases remains unknown. The role of epigenetics in various diseases, including CHD, has attracted increased attention. The contributions of DNA methylation, one of the most important epigenetic modifications, to CHD have not been illuminated. Increasing evidence suggests that aberrant DNA methylation is related to CHD. Here, we briefly introduce DNA methylation and CHD and then review the DNA methylation profiles during cardiac development and in CHD, abnormalities in maternal genome-wide DNA methylation patterns are also described. Whole genome methylation profile and important differentially methylated genes identified in recent years are summarized and clustered according to the sample type and methodologies. Finally, we discuss the novel technology for and prospects of CHD-related DNA methylation.
Collapse
|
33
|
Yan S, Lu J, Jiao K. Epigenetic Regulation of Cardiac Neural Crest Cells. Front Cell Dev Biol 2021; 9:678954. [PMID: 33968946 PMCID: PMC8097001 DOI: 10.3389/fcell.2021.678954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.
Collapse
Affiliation(s)
| | | | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
35
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
36
|
Fuke T, Nakamura A, Inoue T, Kawashima S, Hara KI, Matsubara K, Sano S, Yamazawa K, Fukami M, Ogata T, Kagami M. Role of Imprinting Disorders in Short Children Born SGA and Silver-Russell Syndrome Spectrum. J Clin Endocrinol Metab 2021; 106:802-813. [PMID: 33236057 PMCID: PMC7947753 DOI: 10.1210/clinem/dgaa856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND (Epi)genetic disorders associated with small-for-gestational-age with short stature (SGA-SS) include imprinting disorders (IDs). Silver-Russell syndrome (SRS) is a representative ID in SGA-SS and has heterogenous (epi)genetic causes. SUBJECTS AND METHODS To clarify the contribution of IDs to SGA-SS and the molecular and phenotypic spectrum of SRS, we recruited 269 patients with SGA-SS, consisting of 103 and 166 patients referred to us for genetic testing for SGA-SS and SRS, respectively. After excluding 20 patients with structural abnormalities detected by comparative genomic hybridization analysis using catalog array, 249 patients were classified into 3 subgroups based on the Netchine-Harbison clinical scoring system (NH-CSS), SRS diagnostic criteria. We screened various IDs by methylation analysis for differentially methylated regions (DMRs) related to known IDs. We also performed clinical analysis. RESULTS These 249 patients with SGA-SS were classified into the "SRS-compatible group" (n = 148), the "non-SRS with normocephaly or relative macrocephaly at birth group" (non-SRS group) (n = 94), or the "non-SRS with relative microcephaly at birth group" (non-SRS with microcephaly group) (n = 7). The 44.6% of patients in the "SRS-compatible group," 21.3% of patients in the "non-SRS group," and 14.3% in the "non-SRS with microcephaly group" had various IDs. Loss of methylation of the H19/IGF2:intergenic-DMR and uniparental disomy chromosome 7, being major genetic causes of SRS, was detected in 30.4% of patients in the "SRS-compatible group" and in 13.8% of patients in the "non-SRS group." CONCLUSION We clarified the contribution of IDs as (epi)genetic causes of SGA-SS and the molecular and phenotypic spectrum of SRS. Various IDs constitute underlying factors for SGA-SS, including SRS.
Collapse
Affiliation(s)
- Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Isono Hara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Correspondence and Reprint Requests: Masayo Kagami, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2–10–1 Okura, Setagaya, Tokyo 157–8535, Japan. E-mail:
| |
Collapse
|
37
|
Chang S, Wang Y, Xin Y, Wang S, Luo Y, Wang L, Zhang H, Li J. DNA methylation abnormalities of imprinted genes in congenital heart disease: a pilot study. BMC Med Genomics 2021; 14:4. [PMID: 33407475 PMCID: PMC7789576 DOI: 10.1186/s12920-020-00848-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is resulted from the interaction of genetic aberration and environmental factors. Imprinted genes, which are regulated by epigenetic modifications, are essential for the normal embryonic development. However, the role of imprinted genes in the etiology of CHD remains unclear. METHODS After the samples were treated with bisulfate salt, imprinted genes methylation were measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. T test and One-way ANOVA were performed to evaluate the differences among groups. Odds ratios (ORs) were performed to evaluate the incidence risk of CHD in relation to methylation levels. RESULTS We investigated the alterations of imprinted gene germline differential methylation regions (gDMRs) methylation in patients with CHD. Eighteen imprinted genes that are known to affect early embryonic development were selected and the methylation modification genes were detected by massarray in 27 CHD children and 28 healthy children. Altered gDMR methylation level of 8 imprinted genes was found, including 2 imprinted genes with hypermethylation of GRB10 and MEST and 6 genes with hypomethylation of PEG10, NAP1L5, INPP5F, PLAGL1, NESP and MEG3. Stratified analysis showed that the methylation degree of imprinted genes was different in different types of CHD. Risk analysis showed that 6 imprinted genes, except MEST and NAP1L5, within a specific methylation level range were the risk factors for CHD CONCLUSION: Altered methylation of imprinted genes is associated with CHD and varies in different types of CHD. Further experiments are warranted to identify the methylation characteristics of imprinted genes in different types of CHD and clarify the etiologies of imprinted genes in CHD.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yubo Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yu Xin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shuangxing Wang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China
| | - Yi Luo
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hui Zhang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, No. 2 Yabao Road, Chao Yang District, Beijing, 100020, China.
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou City, 510000, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong Province, China.
| |
Collapse
|
38
|
Xu S, Shi Q, Li B, Han L, Xu G, Peng X, Chen H, Dai S, Ma W, Wang C, Ma J. High MTHFR promoter methylation levels in men confer protection against ischemic stroke. Bosn J Basic Med Sci 2020; 20:477-486. [PMID: 32358951 PMCID: PMC7664794 DOI: 10.17305/bjbms.2020.4636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
The MTHFR gene encodes methylenetetrahydrofolate reductase required for the metabolism of homocysteine (Hcy) - a previously reported independent risk factor for ischemic stroke (IS). In this study, we first aimed to clarify the association between DNA methylation levels in the MTHFR promoter and the risk of IS, followed by the analysis of potential interactions between environmental factors and DNA methylation levels that affect IS risk. We recruited 164 patients with hypertension and IS (case group) and 345 age-matched and sex-matched patients with hypertension only (control group). Demographic and clinical information was obtained using questionnaires, and blood samples were collected for biochemical analyses. Fluorescence quantitative methylation-specific PCR (qMSP) was used to detect MTHFR promoter methylation levels. A logistic regression analysis was performed to determine the relationship between environmental factors, MTHFR promoter methylation levels, and IS risk. We finally generated a receiver operating characteristic curve to determine whether MTHFR promoter methylation levels can predict IS. The mean MTHFR methylation levels in the case group (8.10 ± 6.14) were significantly lower than those in the control group (17.44 ± 3.16; p < 0.05). MTHFR promoter methylation levels were also lower in patients with plasma Hcy levels ≥15 μmol/L (10.65 ± 4.05) than in those with Hcy levels <15 μmol/L (16.74 ± 4.26, p < 0.001). Finally, we found that MTHFR hypermethylation is a protective factor for IS, particular in men (OR in men: 0.07; 95% CI: 0.02-0.16; p < 0.001). Further, sex and MTHFR promoter methylation levels exhibited a preliminary interaction effect on IS risk. These results indicate that MTHFR promoter methylation status might have diagnostic value in IS.
Collapse
Affiliation(s)
- Shan Xu
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Qianping Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Bo Li
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Liyuan Han
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Guodong Xu
- Medical Record Statistics Room, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiaolin Peng
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Hongen Chen
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shuhong Dai
- Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Wancheng Ma
- Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Changyi Wang
- Nanshan Center for Chronic Disease Control, Shenzhen, China
- Corresponding authors: Changyi Wang and Jianping Ma, Nanshan Center for Chronic Disease Control, 5 Huaming Road, Shenzhen, China. E-mail:
| | - Jianping Ma
- Nanshan Center for Chronic Disease Control, Shenzhen, China
- Corresponding authors: Changyi Wang and Jianping Ma, Nanshan Center for Chronic Disease Control, 5 Huaming Road, Shenzhen, China. E-mail:
| |
Collapse
|
39
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
40
|
Su D, Gao Q, Guan L, Sun P, Li Q, Shi C, Ma X. Downregulation of SOX11 in fetal heart tissue, under hyperglycemic environment, mediates cardiomyocytes apoptosis. J Biochem Mol Toxicol 2020; 35:e22629. [PMID: 32935389 DOI: 10.1002/jbt.22629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus is one of the causes of abnormal embryonic heart development, but the mechanism is still poor. This study investigated the regulatory mechanism and role of SOX11 in congenital heart abnormality in a hyperglycemic environment. Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed decreased SOX11 protein and messenger RNA (mRNA) levels in the heart tissue of diabetic offspring compared with the control group. A Sequenom EpiTYPER MassArray showed that methylation sites upstream in SOX11 region 1 were increased in the diabetic group compared with the control group. Luciferase reporter assays and qRT-PCR showed that Dnmt3b overexpression decreased SOX11 promoter activity and its mRNA level, whereas Dnmt3a had little effect on regulating SOX11 expression. Furthermore, we found that Dnmt3L cooperated with Dnmt3b to regulate SOX11 gene expression. Additionally, the function of SOX11 silencing was analyzed by using small interfering RNA-mediated knockdown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptotic assays showed that SOX11 downregulation inhibited cell viability and induced apoptosis in cardiomyocytes. Overexpression of the SOX11 gene suppressed cardiomyocytes apoptosis after high glucose treatment. We identified a novel epigenetic regulatory mechanism of SOX11 during heart development in a hyperglycemic environment and revealed a distinct role of SOX11 in mediating cardiomyocytes viability and apoptosis.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China.,Department of cell biology, Graduate School, Peking Union Medical College, Beijing, China
| | - Qianqian Gao
- Department of Biology, Dezhou College, Dezhou, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Peng Sun
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Qian Li
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Cuige Shi
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China.,Department of cell biology, Graduate School, Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Comparative genome-wide DNA methylation analysis in myocardial tissue from donors with and without Down syndrome. Gene 2020; 764:145099. [PMID: 32861879 DOI: 10.1016/j.gene.2020.145099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS, trisomy 21) is the most common major chromosomal aneuploidy compatible with life. The additional whole or partial copy of chromosome 21 results in genome-wide imbalances that drive the complex pathobiology of DS. Differential DNA methylation in the context of trisomy 21 may contribute to the variable architecture of the DS phenotype. The goal of this study was to examine the genomic DNA methylation landscape in myocardial tissue from non-fetal individuals with DS. >480,000 unique CpG sites were interrogated in myocardial DNA samples from individuals with (n = 12) and without DS (n = 12) using DNA methylation arrays. A total of 93 highly differentially methylated CpG sites and 16 differentially methylated regions were identified in myocardial DNA from subjects with DS. There were 18 differentially methylated CpG sites in chromosome 21, including 5 highly differentially methylated sites. A CpG site in the RUNX1 locus was differentially methylated in DS myocardium, and linear regression suggests that donors' age, gender, DS status, and RUNX1 methylation may contribute up to ~51% of the variability in RUNX1 mRNA expression. In DS myocardium, only 58% of the genes overlapping with differentially methylated regions codify for proteins with known functions and 24% are non-coding RNAs. This study provides an initial snapshot on the extent of genome-wide differential methylation in myocardial tissue from persons with DS.
Collapse
|
42
|
Zhao X, Chang S, Liu X, Wang S, Zhang Y, Lu X, Zhang T, Zhang H, Wang L. Imprinting aberrations of SNRPN, ZAC1 and INPP5F genes involved in the pathogenesis of congenital heart disease with extracardiac malformations. J Cell Mol Med 2020; 24:9898-9907. [PMID: 32693431 PMCID: PMC7520315 DOI: 10.1111/jcmm.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) with extracardiac malformations (EM) is the most common multiple malformation, resulting from the interaction between genetic abnormalities and environmental factors. Most studies have attributed the causes of CHD with EM to chromosomal abnormalities. However, multi‐system dysplasia is usually caused by both genetic mutations and epigenetic dysregulation. The epigenetic mechanisms underlying the pathogenesis of CHD with EM remain unclear. In this study, we investigated the mechanisms of imprinting alterations, including those of the Small nuclear ribonucleoprotein polypeptide N (SNRPN), PLAG1 like zinc finger 1 (ZAC1) and inositol polyphosphate‐5‐phosphatase F (INPP5F) genes, in the pathogenesis of CHD with EM. The methylation levels of SNRPN, ZAC1, and INPP5F genes were analysed by the MassARRAY platform in 24 children with CHD with EM and 20 healthy controls. The expression levels of these genes were detected by real‐time polymerase chain reaction (PCR). The correlation between methylation regulation and gene expression was confirmed using 5‐azacytidine (5‐Aza) treated cells. The methylation levels of SNRPN and ZAC1 genes were significantly increased in CHD with EM, while that of INPP5F was decreased. The methylation alterations of these genes were negatively correlated with expression. Risk analysis showed that abnormal hypermethylation of SNRPN and ZAC1 resulted in 5.545 and 7.438 times higher risks of CHD with EM, respectively, and the abnormal hypomethylation of INPP5F was 8.38 times higher than that of the control group. We concluded that abnormally high methylation levels of SNRPN and ZAC1 and decreased levels of INPP5F imply an increased risk of CHD with EM by altering their gene functions. This study provides evidence of imprinted regulation in the pathogenesis of multiple malformations.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Shaoyan Chang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xinli Liu
- Department of Obstetrics and Gynecology, PLA Army General Hospital 263rd Clinical Department, Beijing, China
| | - Shuangxing Wang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Yueran Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
43
|
Sanchez-Fernandez C, Lorda-Diez CI, Hurlé JM, Montero JA. The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken. Commun Biol 2020; 3:283. [PMID: 32504030 PMCID: PMC7275052 DOI: 10.1038/s42003-020-1012-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Carlos Ignacio Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Juan M Hurlé
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain.
| | - Juan Antonio Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain.
| |
Collapse
|
44
|
Bahado-Singh R, Vishweswaraiah S, Mishra NK, Guda C, Radhakrishna U. Placental DNA methylation changes in detection of tetralogy of Fallot. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:768-775. [PMID: 30977211 DOI: 10.1002/uog.20292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To determine whether the methylation level of cytosine nucleotides in placental DNA can be used to predict tetralogy of Fallot (TOF) and provide insights into the developmental mechanism of this condition. METHODS Tissue sections were obtained from formalin-fixed paraffin-embedded specimens of placental tissue obtained at birth from eight cases with non-chromosomal, non-syndromic TOF and 10 unaffected newborns. The Illumina Infinium HumanMethylation450 BeadChip assay was used to measure cytosine ('CpG' or 'cg') methylation levels at loci throughout the placental genome. Differential methylation was assessed by comparing the β-values (a measure of the extent of cytosine methylation) for individual CpG loci in fetuses with TOF vs in controls. The most discriminating CpG sites were determined based on a preset cut-off of ≥ 2.0-fold change in the methylation level. The predictive accuracy of CpG loci with significant methylation changes for TOF was determined by the area under the receiver-operating-characteristics curve (AUC). A false-discovery-rate (FDR) P-value < 0.05 was used to define a statistically significant difference in the methylation level. Ingenuity Pathway Analysis (IPA) (Qiagen) was used to identify gene pathways that were significantly overexpressed, and thus altered, in TOF cases compared with controls. RESULTS We found a total of 165 significantly differentially methylated CpG loci in TOF cases compared with controls, in 165 separate genes. These biomarkers demonstrated from fair to excellent individual predictive accuracy for TOF detection, with AUCs ≥ 0.75 (FDR P-value < 0.001 for all). The following CpG loci (gene) had the highest predictive accuracy: cg05273049 (ARHGAP22; AUC = 1.00; 95% CI, 1.00-1.00), cg02540011 (CDK5; AUC = 0.96; 95% CI, 0.87-1.00), cg08404201 (TRIM27; AUC = 0.95; 95% CI, 0.84-1.00) and cg00687252 (IER3; AUC = 0.95; 95% CI, 0.84-1.00). IPA revealed over-representation (dysregulation) of 14 gene pathways involved in normal cardiac development, including cardiomyocyte differentiation via bone morphogenetic protein receptors, cardiac hypertrophy signaling and role of nuclear factor of activated T cells in cardiac hypertrophy. Cardiac hypertrophy is an important feature of TOF. CONCLUSIONS Analysis of placental DNA cytosine methylation changes yielded accurate markers for TOF detection and provided mechanistic information on TOF development. Our work appears to confirm the central role of epigenetic changes and of the placenta in the development of TOF. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- R Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - S Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - N K Mishra
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - C Guda
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - U Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
45
|
Peyvandi S, Baer RJ, Chambers CD, Norton ME, Rajagopal S, Ryckman KK, Moon-Grady A, Jelliffe-Pawlowski LL, Steurer MA. Environmental and Socioeconomic Factors Influence the Live-Born Incidence of Congenital Heart Disease: A Population-Based Study in California. J Am Heart Assoc 2020; 9:e015255. [PMID: 32306820 PMCID: PMC7428546 DOI: 10.1161/jaha.119.015255] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The development of congenital heart disease (CHD) is multifactorial with genetic and environmental influences. We sought to determine the relationship between socioeconomic and environmental factors with the incidence of CHD among live‐born infants in California and to determine whether maternal comorbidities are in the causal pathway. METHODS AND RESULTS This was a population‐based cohort study in California (2007–2012). The primary outcome was having significant CHD. Predictors included socioeconomic status and environmental exposure to pollutants determined by U.S. Census data. A social deprivation index and environmental exposure index was assigned based on neighborhood socioeconomic variables, categorized into 4 quartiles. Quartile 1 was the best with the least exposure to pollutants and social deprivation, and quartile 4 was the worst. Multivariate logistic regression and mediation analyses were performed. Among 2 419 651 live‐born infants, the incidence of CHD was 3.2 per 1000 live births. The incidence of CHD was significantly higher among those in quartile 4 compared with quartile 1 (social deprivation index: 0.35% versus 0.29%; odds ratio [OR], 1.31; 95% CI, 1.21–1.41; environmental exposure index: 0.35% versus 0.29%; OR, 1.23; 95% CI, 1.15–1.31) after adjusting for maternal race/ethnicity and age and accounting for the relationship between the 2 primary predictors. Maternal comorbidities explained 13% (95% CI, 10%–20%) of the relationship between social deprivation index and environmental exposure index with the incidence of CHD. CONCLUSIONS Increased social deprivation and exposure to environmental pollutants are associated with the incidence of live‐born CHD in California. Maternal comorbidities explain some, but not all, of this relationship. These findings identify targets for social policy initiatives to minimize health disparities.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Division of Cardiology Department of Pediatrics University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Rebecca J Baer
- Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Pediatrics University of California San Diego La Jolla CA
| | | | - Mary E Norton
- Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Satish Rajagopal
- Division of Critical Care University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Kelli K Ryckman
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Anita Moon-Grady
- Division of Cardiology Department of Pediatrics University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Laura L Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA
| | - Martina A Steurer
- Division of Critical Care University of California San Francisco Benioff Children's Hospital San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco Benioff Children's Hospital San Francisco CA.,California Preterm Birth Initiative University of California San Francisco Benioff Children's Hospital San Francisco CA
| |
Collapse
|
46
|
Methylmalonic Acidemia Complicated by Homocystinuria Diseases: a Report of Three Cases. Adv Ther 2020; 37:630-636. [PMID: 31758516 DOI: 10.1007/s12325-019-01149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 01/30/2023]
Abstract
This study aims to improve our understanding of methylmalonic acidemia (MMA) complicated by homocystinuria disease by analyzing the clinical characteristics, treatment response and prognosis of three patients. Hyperhomocysteinemia and developmental retardation were present in all patients, epilepsy was present in one patient, and hemolytic uremic syndrome was present in one patient. The conditions of two patients were complicated by pulmonary arterial hypertension, one patient by left pulmonary vein ectopic drainage to the coronary sinus and the other by noncompaction of the ventricular myocardium. The two MMA patients with the complication of severe pulmonary arterial hypertension died because of late diagnosis and irregular treatment of MMA. Echocardiography is necessary for patients with combined MMA and homocystinuria, and these patients are susceptible to cardiovascular disease. When a patient with combined MMA and homocystinuria has the complication of severe pulmonary arterial hypertension, the prognosis is poor.
Collapse
|
47
|
Lim JH, Kang YJ, Lee BY, Han YJ, Chung JH, Kim MY, Kim MH, Kim JW, Cho YH, Ryu HM. Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clin Epigenetics 2019; 11:180. [PMID: 31801612 PMCID: PMC6894197 DOI: 10.1186/s13148-019-0756-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms provide an interface between environmental factors and the genome and are influential in various diseases. These mechanisms, including DNA methylation, influence the regulation of development, differentiation, and establishment of cellular identity. Here, we performed high-throughput methylome profiling to determine whether differential patterns of DNA methylation correlate with Down syndrome (DS). MATERIALS AND METHODS We extracted DNA from the chorionic villi cells of five normal and five DS fetuses at the early developmental stage (12-13 weeks of gestation). Methyl-capture sequencing (MC-Seq) was used to investigate the methylation levels of CpG sites distributed across the whole genome to identify differentially methylated CpG sites (DMCs) and regions (DMRs) in DS. New functional annotations of DMR genes using bioinformatics tools were predicted. RESULTS DNA hypermethylation was observed in DS fetal chorionic villi cells. Significant differences were evident for 4,439 DMCs, including hypermethylation (n = 4,261) and hypomethylation (n = 178). Among them, 140 hypermethylated DMRs and only 1 hypomethylated DMR were located on 121 genes and 1 gene, respectively. One hundred twenty-two genes, including 141 DMRs, were associated with heart morphogenesis and development of the ear, thyroid gland, and nervous systems. The genes were significantly associated with DS and various diseases, including hepatopulmonary syndrome, conductive hearing loss, holoprosencephaly, heart diseases, glaucoma, and musculoskeletal abnormalities. CONCLUSIONS This is the first study to compare the whole-epigenome DNA methylation pattern of the chorionic villi cells from normal and DS fetuses at the early developmental-stage using MC-seq. Overall, our results indicate that the chorionic villi cells of DS fetuses are hypermethylated in all autosomes and suggested that altered DNA methylation may be a recurrent and functionally relevant downstream response to DS in human cells. This study provides basic information for future research focused on the pathophysiology of the DS and its potential effects, as well as the role DNA methylation plays in the early developmental stage of DS fetuses.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yu-Jung Kang
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea
| | - Bom Yi Lee
- SD Genomics Co., Ltd., Seoul, Republic of Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Jin Hoon Chung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Min Hyoung Kim
- Department of Obstetrics Gynecology, Mizmedi Hospital, Seoul, Republic of Korea
| | - Jin Woo Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, Republic of Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Hyun Mee Ryu
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea. .,Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
48
|
Kedar R, Chandel D. MTHFR gene polymorphism and associated nutritional deficiency in the etiology and pathogenesis of Down syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0010-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat Commun 2019; 10:4297. [PMID: 31541101 PMCID: PMC6754421 DOI: 10.1038/s41467-019-12325-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Tet-mediated DNA demethylation plays an important role in shaping the epigenetic landscape and chromatin accessibility to control gene expression. While several studies demonstrated pivotal roles of Tet in regulating embryonic development, little is known about their functions in heart development. Here we analyze DNA methylation and hydroxymethylation dynamics during early cardiac development in both human and mice. We find that cardiac-specific deletion of Tet2 and Tet3 in mice (Tet2/3-DKO) leads to ventricular non-compaction cardiomyopathy (NCC) with embryonic lethality. Single-cell RNA-seq analyses reveal a reduction in cardiomyocyte numbers and transcriptional reprogramming in cardiac tissues upon Tet2/3 depletion. Impaired DNA demethylation and reduced chromatin accessibility in Tet2/3-DKO mice further compromised Ying-yang1 (YY1) binding to its genomic targets, and perturbed high-order chromatin organization at key genes involved in heart development. Our studies provide evidence of the physiological role of Tet in regulating DNA methylation dynamics and chromatin organization during early heart development. Tet-mediated DNA demethylation is intimately involved in reguatling embryonic development. Here the authors characterise DNA methylation and hydroxymethylation dynamics during early cardiac development in both human and mice and provide evidence that Tet-mediated DNA demethylation plays a role in regulating chromatin organization during early heart development.
Collapse
|
50
|
Mabasa L, Samodien E, Sangweni NF, Pheiffer C, Louw J, Johnson R. In Utero One-Carbon Metabolism Interplay and Metabolic Syndrome in Cardiovascular Disease Risk Reduction. Mol Nutr Food Res 2019; 64:e1900377. [PMID: 31408914 DOI: 10.1002/mnfr.201900377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/16/2022]
Abstract
The maternal obesogenic environment plays a role in programing the susceptibility of the fetus to postnatal non-alcoholic fatty liver disease (NAFLD), a risk factor for cardiovascular disease (CVD). NAFLD is a multisystem disease that is characterized by hepatic fat accumulation due in part to dysregulated energy metabolism network through epigenetic mechanisms such as DNA methylation. DNA methylation affects fetal programing and disease risk via regulation of gene transcription; it is affected by methyl donor nutrients such as vitamin B12 , methionine, folic acid, vitamin B6 , and choline. Although several studies have documented the role of several maternal methyl donor nutrients on obesity-induced NAFLD in offspring, currently, data are lacking on its impact on CVD risk as an endpoint. The aim of this paper is to use current knowledge to construct a postulation for the potential role of a comprehensive gestational methyl donor nutrients supplementary approach on the susceptibility of offspring to developing metabolic-syndrome-related cardiovascular complications.
Collapse
Affiliation(s)
- Lawrence Mabasa
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Ebrahim Samodien
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Nonhlakanipho F Sangweni
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|