1
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Boonsanay V, Mosa MH, Looso M, Weichenhan D, Ceteci F, Pudelko L, Lechel A, Michel CS, Künne C, Farin HF, Plass C, Greten FR. Loss of SUV420H2-Dependent Chromatin Compaction Drives Right-Sided Colon Cancer Progression. Gastroenterology 2023; 164:214-227. [PMID: 36402192 PMCID: PMC9889219 DOI: 10.1053/j.gastro.2022.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Epigenetic processes regulating gene expression contribute markedly to epithelial cell plasticity in colorectal carcinogenesis. The lysine methyltransferase SUV420H2 comprises an important regulator of epithelial plasticity and is primarily responsible for trimethylation of H4K20 (H4K20me3). Loss of H4K20me3 has been suggested as a hallmark of human cancer due to its interaction with DNMT1. However, the role of Suv4-20h2 in colorectal cancer is unknown. METHODS We examined the alterations in histone modifications in patient-derived colorectal cancer organoids. Patient-derived colorectal cancer organoids and mouse intestinal organoids were genetically manipulated for functional studies in patient-derived xenograft and orthotopic transplantation. Gene expression profiling, micrococcal nuclease assay, and chromatin immunoprecipitation were performed to understand epigenetic regulation of chromatin states and gene expression in patient-derived and mouse intestinal organoids. RESULTS We found that reduced H4K20me3 levels occurred predominantly in right-sided patient-derived colorectal cancer organoids, which were associated with increased chromatin accessibility. Re-compaction of chromatin by methylstat, a histone demethylase inhibitor, resulted in reduced growth selectively in subcutaneously grown tumors derived from right-sided cancers. Using mouse intestinal organoids, we confirmed that Suv4-20h2-mediated H4K20me3 is required for maintaining heterochromatin compaction and to prevent R-loop formation. Cross-species comparison of Suv4-20h2-depleted murine organoids with right-sided colorectal cancer organoids revealed a large overlap of gene signatures involved in chromatin silencing, DNA methylation, and stemness/Wnt signaling. CONCLUSIONS Loss of Suv4-20h2-mediated H4K20me3 drives right-sided colorectal tumorigenesis through an epigenetically controlled mechanism of chromatin compaction. Our findings unravel a conceptually novel approach for subtype-specific therapy of this aggressive form of colorectal cancer.
Collapse
Affiliation(s)
- Verawan Boonsanay
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mohammed H. Mosa
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lorenz Pudelko
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Andre Lechel
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Christian S. Michel
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Henner F. Farin
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany,Correspondence Address correspondence to: Florian R. Greten, MD, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Berrino E, Miglio U, Bellomo SE, Debernardi C, Bragoni A, Petrelli A, Cascardi E, Giordano S, Montemurro F, Marchiò C, Venesio T, Sapino A. The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients. Cells 2022; 11:cells11121944. [PMID: 35741073 PMCID: PMC9221920 DOI: 10.3390/cells11121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. METHODS Using quantitative, reverse-transcription PCR, we assessed L1 mRNA expression in 12 BC cells, 210 BC patients and in 47 normal mammary tissues. L1 expression was then correlated with molecular and clinicopathological data. RESULTS We identified a tumor-exclusive expression of L1s, absent in normal mammary cells and tissues. A positive correlation between L1 expression and tumor dedifferentiation, lymph-node involvement and increased immune infiltration was detected. Molecular subtyping highlighted an enrichment of L1s in basal-like cells and cancers. By exploring disease-free survival, we identified L1 overexpression as an independent biomarker for patients with a high risk of recurrence in hormone-receptor-negative BCs. CONCLUSIONS Overall, L1 reactivation identified BCs with aggressive features and patients with a worse clinical fate.
Collapse
Affiliation(s)
- Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Umberto Miglio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Sara Erika Bellomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Oncology, University of Turin, 10124 Turin, Italy
| | - Carla Debernardi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Alberto Bragoni
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Eliano Cascardi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Oncology, University of Turin, 10124 Turin, Italy
| | - Filippo Montemurro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Correspondence: ; Tel.: +39-011-9933547; Fax: +39-011-9933480
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (E.B.); (U.M.); (S.E.B.); (A.B.); (A.P.); (E.C.); (S.G.); (F.M.); (C.M.); (A.S.)
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| |
Collapse
|
4
|
Pinson ME, Court F, Masson A, Renaud Y, Fantini A, Bacoeur-Ouzillou O, Barriere M, Pereira B, Guichet PO, Chautard E, Karayan-Tapon L, Verrelle P, Arnaud P, Vaurs-Barrière C. L1 chimeric transcripts are expressed in healthy brain and their deregulation in glioma follows that of their host locus. Hum Mol Genet 2022; 31:2606-2622. [PMID: 35298627 PMCID: PMC9396940 DOI: 10.1093/hmg/ddac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5′ UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.
Collapse
Affiliation(s)
- Marie-Elisa Pinson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Aymeric Masson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Allison Fantini
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | | - Marie Barriere
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, Délégation à la Recherche Clinique et à l'Innovation, Clermont-Ferrand Hospital, Clermont-Ferrand 63003, France
| | | | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand 63011, France.,Pathology Department, Centre Jean PERRIN, Clermont-Ferrand 63011, France
| | - Lucie Karayan-Tapon
- Cancer Biology Department, CHU de Poitiers, Poitiers 86021, France.,INSERM, U1084, Poitiers 86021, France.,Université de Poitiers, Poitiers 86000, France
| | - Pierre Verrelle
- INSERM, U1196 CNRS UMR9187, Curie Institute, Orsay 91405, France.,Radiotherapy Department Curie Institute, Paris 75005, France.,Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Qin J, Li H, Yu W, Wei L, Wen B. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60981-60992. [PMID: 34165751 DOI: 10.1007/s11356-021-14849-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have indicated that capsaicin-rich diet and cold weather have shown strong association with tumor incidence. Thus, we investigated the effects of capsaicin and cold exposure in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer as well as the mechanisms underlying capsaicin and cold-induced CRC. Rats were randomly divided into four groups and received cold still water and capsaicin via intragastric gavage until the end of the experiment. The rat's body weight, thymus weight, and food intakes were assessed. Global levels of histone H3K9, H3K18, H3K27, and H4K16 acetylation and histone deacetylase (HDACs) in colon mucosa were assessed by western blot. Expression levels of Toll-like receptors 2 (TLR2) and Toll-like receptors 4 (TLR4) were measured by western blot and reverse-transcriptase quantitative polymerase chain reaction (qPCR). We found that cold and low-dose capsaicin increased tumor numbers and multiplicity, although there were no differences in tumor incidence. Additionally, rat exposure to cold water and capsaicin display further higher levels of histone H3 lysine 9 (H3K9AC), histone H3 lysine 18 (H3K18AC), histone H3 lysine 27 (H3K27AC), and HDACs compared with the DMH and normal rats. In contrast, a considerable decrease of histone H4 lysine 16 (H4K16AC) was detected in the colon mucosa. Cold and low-dose capsaicin exposure groups were also increased TLR2 and TLR4 protein levels and mRNA levels. These results suggest that chronic cold exposure and capsaicin at a low-dose intervention exacerbate ectopic expression of global histone acetylation and TLR level, which are crucial mechanisms responsible for the progression of colorectal cancer in rats.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huixuan Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Yu
- The Second People's Hospital Lianyungang, Lianyungang, China
| | - Li Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Many Different LINE-1 Retroelements Are Activated in Bladder Cancer. Int J Mol Sci 2020; 21:ijms21249433. [PMID: 33322422 PMCID: PMC7763009 DOI: 10.3390/ijms21249433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression. We conclude that many L1 elements are epigenetically activated in bladder cancer in a varied pattern. Our findings indicate that expression of individual L1s is highly heterogeneous between and among cancer types.
Collapse
|
7
|
Jeziorska DM, Murray RJS, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, Chen T, Li E, Telenius J, Lynch M, Graham B, Smith AJH, Lund JN, Hughes JR, Higgs DR, Tufarelli C. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc Natl Acad Sci U S A 2017; 114:E7526-E7535. [PMID: 28827334 PMCID: PMC5594649 DOI: 10.1073/pnas.1703087114] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Robert J S Murray
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom
| | - Marco De Gobbi
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Ricarda Gaentzsch
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - David Garrick
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Helena Ayyub
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas M. D. Anderson Cancer Center, Smithville, TX 78957
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Jelena Telenius
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Magnus Lynch
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Bryony Graham
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Andrew J H Smith
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
- Medical Research Council Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Jonathan N Lund
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom
| | - Jim R Hughes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom;
| | - Cristina Tufarelli
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom;
| |
Collapse
|