1
|
Maussion G, Rocha C, Ramoz N. iPSC-derived models for anorexia nervosa research. Trends Mol Med 2024; 30:339-349. [PMID: 38472034 DOI: 10.1016/j.molmed.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Anorexia nervosa (AN) is a complex neuropsychiatric disorder with genetic and epigenetic components that results in reduced food intake combined with alterations in the reward-processing network. While studies of patient cohorts and mouse models have uncovered genes and epigenetic changes associated with the disease, neuronal networks and brain areas preferentially activated and metabolic changes associated with reduced food intake, the underlying molecular and cellular mechanisms remain unknown. The use of both 2D in vitro cultures and 3D models, namely organoids and spheroids, derived from either human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), would allow identification of cell type-specific changes associated with AN and comorbid diseases, to study preferential connections between brain areas and organs, and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nicolas Ramoz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris 75014, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, Paris F-75014, France
| |
Collapse
|
2
|
Seah C, Huckins LM, Brennand KJ. Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biol Psychiatry 2023; 93:642-650. [PMID: 36658083 DOI: 10.1016/j.biopsych.2022.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies reveal the complex polygenic architecture underlying psychiatric disorder risk, but there is an unmet need to validate causal variants, resolve their target genes(s), and explore their functional impacts on disorder-related mechanisms. Disorder-associated loci regulate transcription of target genes in a cell type- and context-specific manner, which can be measured through expression quantitative trait loci. In this review, we discuss methods and insights from context-specific modeling of genetically and environmentally regulated expression. Human induced pluripotent stem cell-derived cell type and organoid models have uncovered context-specific psychiatric disorder associations by investigating tissue-, cell type-, sex-, age-, and stressor-specific genetic regulation of expression. Techniques such as massively parallel reporter assays and pooled CRISPR (clustered regularly interspaced short palindromic repeats) screens make it possible to functionally fine-map genome-wide association study loci and validate their target genes at scale. Integration of disorder-associated contexts with these patient-specific human induced pluripotent stem cell models makes it possible to uncover gene by environment interactions that mediate disorder risk, which will ultimately improve our ability to diagnose and treat psychiatric disorders.
Collapse
Affiliation(s)
- Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Determining the protective effects of Ma-Mu-Ran Antidiarrheal Capsules against acute DSS-induced enteritis using 16S rRNA gene sequencing and fecal metabolomics. Chin J Nat Med 2022; 20:364-377. [DOI: 10.1016/s1875-5364(22)60158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/20/2022]
|
4
|
Hayakawa K, Nishitani K, Tanaka S. Kynurenine, 3-OH-kynurenine, and anthranilate are nutrient metabolites that alter H3K4 trimethylation and H2AS40 O-GlcNAcylation at hypothalamus-related loci. Sci Rep 2019; 9:19768. [PMID: 31875008 PMCID: PMC6930210 DOI: 10.1038/s41598-019-56341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms can establish and maintain mitotically stable patterns of gene expression while retaining the DNA sequence. These mechanisms can be affected by environmental factors such as nutrients. The importance of intracellular dosages of nutrient metabolites such as acetyl coenzyme A and S-adenosylmethionine, which are utilized as donors for post-translational modifications, is well-known in epigenetic regulation; however, the significance of indirect metabolites in epigenetic regulation is not clear. In this study, we screened for metabolites that function as epigenetic modulators. Because the expression of genes related to hypothalamic function is reportedly affected by nutritional conditions, we used a neural cell culture system and evaluated hypothalamic-linked loci. We supplemented the culture medium with 129 metabolites separately during induction of human-iPS-derived neural cells and used high-throughput ChIP-qPCR to determine the epigenetic status at 37 hypothalamus-linked loci. We found three metabolites (kynurenine, 3-OH-kynurenine, and anthranilate) from tryptophan pathways that increased H3K4 trimethylation and H2AS40 O-GlcNAcylation, resulting in upregulated gene expression at most loci, except those encoding pan-neural markers. Dietary supplementation of these three metabolites and the resulting epigenetic modification were important for stability in gene expression. In conclusion, our findings provide a better understanding of how nutrients play a role in epigenetic mechanisms.
Collapse
Affiliation(s)
- Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan. .,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kenta Nishitani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Maussion G, Demirova I, Gorwood P, Ramoz N. Induced Pluripotent Stem Cells; New Tools for Investigating Molecular Mechanisms in Anorexia Nervosa. Front Nutr 2019; 6:118. [PMID: 31457016 PMCID: PMC6700384 DOI: 10.3389/fnut.2019.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a dramatic psychiatric disorder characterized by dysregulations in food intake and reward processing, involving molecular and cellular changes in several peripheral cell types and central neuronal networks. Genomic and epigenomic analyses have allowed the identification of multiple genetic and epigenetic modifications highlighting the complex pathophysiology of AN. Behavioral and genetic rodent models have been used to recapitulate and investigate, with some limitations, the cellular and molecular changes that potentially underlie eating disorders. In the last 5 years, the use of induced pluripotent stem cells (IPSCs), combined with CRISPR-Cas9 technology, has led to the generation of specific neuronal cell subtypes engineered from human somatic samples, representing a powerful tool to complement observations made in human samples and data collected from animal models. Systems biology using IPSCs has indeed proved to be a valuable approach for the study of metabolic disorders, in addition to neurodevelopmental and psychiatric disorders. The manuscript, while reviewing the main findings related to the genetic, epigenetic, and cellular bases of AN, will present how new studies published, or to be performed, in the field of IPSC-derived cells should improve our current understanding of the pathophysiology of AN and provide potential therapeutic strategies addressing specific endophenotypes.
Collapse
Affiliation(s)
- Gilles Maussion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Iveta Demirova
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Philip Gorwood
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,Hôpital Sainte-Anne (CMME), University Paris-Descartes, Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
6
|
Kanie O. An Orthogonal Point of View. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1909.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Osamu Kanie
- Department of Applied Biochemistry, Faculty of Engineering, Tokai University
| |
Collapse
|
7
|
Kanie O. An Orthogonal Point of View. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1909.2se] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Osamu Kanie
- Department of Applied Biochemistry, Faculty of Engineering, Tokai University
| |
Collapse
|
8
|
Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019; 43:2164-2176. [PMID: 30896835 PMCID: PMC6445593 DOI: 10.3892/ijmm.2019.4143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene-like 1 (Plagl1), which encodes a C2H2 zinc-finger transcription factor, occurs in hypocretin neuron-ablated transgenic mice, suggesting that PLAGL1 is co-expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro-hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunore-activity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1-binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yoshiko Honda
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Shizuka Takaku
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Souichi Oe
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Nae Takizawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yasuharu Takamori
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Kiyoshi Kurokawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Tohru Kodama
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| |
Collapse
|