1
|
Wang T, Du Y, Song H, Sun J, Jiang W, Xu Z. hsa_circ_0072309 Inhibits Oncogenesis in Hepatocellular Carcinoma by Epigenetic Activation of its Host Gene. Cell Biochem Biophys 2024; 82:3251-3263. [PMID: 39283585 DOI: 10.1007/s12013-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 11/20/2024]
Abstract
Recently, numerous studies have revealed the participation of circular RNAs (circRNAs) in cancer progression. Likewise, this research focused on circRNAs in hepatocellular carcinoma (HCC). A lowly expressed circRNA hsa_circ_0072309 in HCC was screened by analyzing the circRNA microarray GSE242797 and GSE216115 and identified in clinical specimens and cells. Subsequently, CCK-8, colony formation, and transwell assays were performed. The results revealed that hsa_circ_0072309 overexpression suppressed HCC cell proliferation, migration, invasion, and sorafenib resistance, whereas its suppression showed opposite results. Mechanistic investigation found an interaction between hsa_circ_0072309 and its host gene leukemia inhibitory factor receptor (LIFR) in HCC. We found that LIFR overexpression promoted the hsa_circ_0072309 formation. In turn, hsa_circ_0072309 recruited the E1A binding protein p300 to promote the enrichment of H3K27 acetylation (H3K27ac) in the LIFR enhancer, thus transcriptionally promoting LIFR expression. To conclude, we revealed a hsa_circ_0072309/LIFR regulatory loop in HCC, which may provide a potential target for HCC treatment.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Yanan Du
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Haiyang Song
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Jiewei Sun
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Wenjin Jiang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| | - Zhiying Xu
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| |
Collapse
|
2
|
Luo W, Zhou Y, Wang LY, Ai L. Interactions between myoblasts and macrophages under high glucose milieus result in inflammatory response and impaired insulin sensitivity. World J Diabetes 2024; 15:1589-1602. [PMID: 39099815 PMCID: PMC11292338 DOI: 10.4239/wjd.v15.i7.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance (IR). Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle. However, despite of the decades of research, whether macrophages infiltration and polarization in skeletal muscle under high glucose (HG) milieus results in the development of IR is yet to be elucidated. C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation. Further exploration of macrophages' role in myoblasts IR and the dynamics of their infiltration and polarization is warranted. AIM To evaluate interactions between myoblasts and macrophages under HG, and its effects on inflammation and IR in skeletal muscle. METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining. Then, we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus. The effects of myoblasts on macrophages were explored through morphological observation, CCK-8 assay, Flow Cytometry, and enzyme-linked immunosorbent assay. The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation, CCK-8 assay, Immunofluorescence, and 2-NBDG assay. RESULTS The F4/80 and co-localization of F4/80 and CD86 increased, and the myofiber size decreased in IR group (P < 0.01, g = 6.26). Compared to Mc group, F4/80+CD86+CD206- cells, tumor necrosis factor-α (TNFα), inerleukin-1β (IL-1β) and IL-6 decreased, and IL-10 increased in McM group (P < 0.01, g > 0.8). In McM + HG group, F4/80+CD86+CD206- cells, monocyte chemoattractant protein 1, TNFα, IL-1β and IL-6 were increased, and F4/80+CD206+CD86- cells and IL-10 were decreased compared with Mc + HG group and McM group (P < 0.01, g > 0.8). Compered to M group, myotube area, myotube number and E-MHC were increased in MMc group (P < 0.01, g > 0.8). In MMc + HG group, myotube area, myotube number, E-MHC, GLUT4 and glucose uptake were decreased compared with M + HG group and MMc group (P < 0.01, g > 0.8). CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR, which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing 210014, Jiangsu Province, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li-Ying Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lei Ai
- Department of Sports Physiology Research, Jiangsu Research Institute of Sports Science, Nanjing 210033, Jiangsu Province, China
| |
Collapse
|
3
|
Chen J, Li Q. Emerging role of HDAC11 in skeletal muscle biology. Front Cell Dev Biol 2024; 12:1368171. [PMID: 38859964 PMCID: PMC11163118 DOI: 10.3389/fcell.2024.1368171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
HDAC11 is an epigenetic repressor of gene transcription, acting through its deacetylase activity to remove functional acetyl groups from the lysine residues of histones at genomic loci. It has been implicated in the regulation of different immune responses, metabolic activities, as well as cell cycle progression. Recent studies have also shed lights on the impact of HDAC11 on myogenic differentiation and muscle development, indicating that HDAC11 is important for histone deacetylation at the promoters to inhibit transcription of cell cycle related genes, thereby permitting myogenic activation at the onset of myoblast differentiation. Interestingly, the upstream networks of HDAC11 target genes are mainly associated with cell cycle regulators and the acetylation of histones at the HDAC11 target promoters appears to be residue specific. As such, selective inhibition, or activation of HDAC11 presents a potential therapeutic approach for targeting distinct epigenetic pathways in clinical applications.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Li Q, Mach YZ, Hamed M, Khilji S, Chen J. Regulation of HDAC11 gene expression in early myogenic differentiation. PeerJ 2023; 11:e15961. [PMID: 37663282 PMCID: PMC10474826 DOI: 10.7717/peerj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Histone acetylation and deacetylation affect the patterns of gene expression in cellular differentiation, playing pivotal roles in tissue development and maintenance. For example, the intrinsic histone acetyltransferase activity of transcriptional coactivator p300 is especially required for the expression of myogenic regulatory factors including Myf5 and MyoD, and consequently for skeletal myogenesis. On the other hand, histone deacetylases (HDACs) remove the acetyl group from histones, which is critical for gene repression in stem cell fate transition. Through integrative omic analyses, we found that while some HDACs were differentially expressed at the early stage of skeletal myoblast differentiation, Hdac11 gene expression was significantly enhanced by nuclear receptor signaling. In addition, p300 and MyoD control Hdac11 expression in milieu of normal and signal-enhanced myoblast differentiation. Thus, HDAC11 may be essential to differential gene expression at the onset of myoblast differentiation.
Collapse
Affiliation(s)
- Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yan Z. Mach
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Li Y, Khilji S, Mach YZ, Chen J, Li Q. Chromatin state distribution of residue-specific histone acetylation in early myoblast differentiation. JOURNAL OF BIG DATA 2022; 9:116. [PMID: 36514349 PMCID: PMC9734207 DOI: 10.1186/s40537-022-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Dynamic changes in epigenetic landscape reflect a critical command of lineage-specific gene expression. In an effort to discern the epigenetic regulatory networks of myogenic differentiation, we have used systematic and integrative approaches to explore multi-omics datasets on global myogenic gene expression, histone acetylation and acetyltransferase occupancy in view of distinct chromatin states. In this brief report, we discuss experimental design and provide a comprehensive assessment regarding data quality control, filtering and processing. We also define a gene-level overlap between RNA-seq and ChIP-seq datasets through integrative analyses to offer strategies for future use of the data. Furthermore, our analyses generate a blueprint on chromatin state distribution of residue-specific histone acetylation and concomitant association with histone acetyltransferase p300 in committed skeletal myoblasts and differential histone acetylation signatures at the onset of myoblast differentiation. These datasets can be further utilized to delineate the function of muscle-specific regulatory elements governed by other muscle myogenic regulators or signaling molecules.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Yan Z. Mach
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
6
|
Yang N, Das D, Shankar SR, Goy PA, Guccione E, Taneja R. An interplay between BRD4 and G9a regulates skeletal myogenesis. Front Cell Dev Biol 2022; 10:978931. [PMID: 36158208 PMCID: PMC9489841 DOI: 10.3389/fcell.2022.978931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation and methylation are epigenetic modifications that are dynamically regulated by chromatin modifiers to precisely regulate gene expression. However, the interplay by which histone modifications are synchronized to coordinate cellular differentiation is not fully understood. In this study, we demonstrate a relationship between BRD4, a reader of acetylation marks, and G9a, a writer of methylation marks in the regulation of myogenic differentiation. Using loss- and gain-of-function studies, as well as a pharmacological inhibition of its activity, we examined the mechanism by which BRD4 regulates myogenesis. Transcriptomic analysis using RNA sequencing revealed that a number of myogenic differentiation genes are downregulated in Brd4-depleted cells. Interestingly, some of these genes were upregulated upon G9a knockdown, indicating that BRD4 and G9a play opposing roles in the control of myogenic gene expression. Remarkably, the differentiation defect caused by Brd4 knockdown was rescued by inhibition of G9a methyltransferase activity. These findings demonstrate that the absence of BRD4 results in the upregulation of G9a activity and consequently impaired myogenic differentiation. Collectively, our study identifies an interdependence between BRD4 and G9a for the precise control of transcriptional outputs to regulate myogenesis.
Collapse
Affiliation(s)
- Naidi Yang
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Taneja,
| |
Collapse
|
7
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
8
|
Zhang Z, Yang P, Wang C, Tian R. LncRNA CRNDE hinders the progression of osteoarthritis by epigenetic regulation of DACT1. Cell Mol Life Sci 2022; 79:405. [PMID: 35802196 PMCID: PMC11072342 DOI: 10.1007/s00018-022-04427-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is mainly characterized by articular cartilage degeneration, synovial fibrosis, and inflammation. LncRNA CRNDE (colorectal neoplasia differentially expressed) has been reported to be down-regulated in age-related OA, but its role in injury-induced OA needs to be further explored. In this study, an OA rat model was established using anterior cruciate ligament transection, and the adenovirus-mediated CRNDE overexpression (Ad-CRNDE) or DACT1 (dapper antagonist of catenin-1) interference (sh-DACT1) vectors were administered by intraarticular injection. Moreover, chondrocyte‑like ATDC5 cells were treated with IL-1β (10 ng/mL) to simulate OA conditions in vitro. We found that overexpression of CRNDE alleviated cartilage damage and synovitis in OA rats, and suppressed IL-1β-induced apoptosis, inflammation, and extracellular matrix (ECM) degradation in chondrocyte‑like ATDC5 cells, while silencing DACT1 effectively antagonized the protective effect of CRNDE both in vivo and in vitro. Mechanism studies revealed that DACT1 could act as a downstream target of CRNDE. By recruiting p300, CRNDE promoted the enrichment of H3K27ac in the DACT1 promoter, thus promoting DACT1 transcription. In addition, CRNDE hindered the activation of the Wnt/β-catenin pathway in IL-1β-stimulated cells by inducing DACT1 expression. In conclusion, CRNDE promoted DACT1 expression through epigenetic modification and restrained the activation of Wnt/β-catenin signaling to impede the progression of OA.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
- Department of Sports Injury, Xi'an Honghui Hospital, Xi'an, China.
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Run Tian
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| |
Collapse
|
9
|
Hamed M, Chen J, Li Q. Regulation of Dystroglycan Gene Expression in Early Myoblast Differentiation. Front Cell Dev Biol 2022; 10:818701. [PMID: 35330913 PMCID: PMC8940196 DOI: 10.3389/fcell.2022.818701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dystroglycan, a component of the dystrophin-associated glycoprotein complex, connects the extracellular matrix and cytoskeleton to maintain muscle membrane integrity. As such, abnormalities of dystroglycan are linked to different types of muscular dystrophies. In an effort to develop therapeutic approaches to re-establish signal integration for muscle repair and homeostasis, we have previously determined that a clinically approved agonist of retinoid X receptor enhances myoblast differentiation through direct regulation of gene expression of the muscle master regulator MyoD. Using comprehensive omics and molecular analyses, we found that dystroglycan gene expression is responsive to retinoid X receptor-selective signaling in early myoblast differentiation. In addition, the dystroglycan gene is a MyoD target, and residue-specific histone acetylation coincides with the occupancy of histone acetyltransferase p300 at the MyoD binding sites. Consequently, the p300 function is important for rexinoid-augmented dystroglycan gene expression. Finally, dystroglycan plays a role in myoblast differentiation. Our study sheds new light on dystroglycan regulation and function in myoblast differentiation and presents a potential avenue for re-establishing signal integration of a specific chromatin state pharmacologically to overcome muscle pathology and identify additional myogenic interactions for therapeutic applications.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Qiao Li,
| |
Collapse
|
10
|
Khilji S, Li Y, Chen J, Li Q. Multi-Omics Approach to Dissect the Mechanisms of Rexinoid Signaling in Myoblast Differentiation. Front Pharmacol 2021; 12:746513. [PMID: 34603059 PMCID: PMC8484533 DOI: 10.3389/fphar.2021.746513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Stem cells represent a key resource in regenerative medicine, however, there is a critical need for pharmacological modulators to promote efficient conversion of stem cells into a myogenic lineage. We have previously shown that bexarotene, an agonist of retinoid X receptor (RXR) approved for cancer therapy, promotes the specification and differentiation of skeletal muscle progenitors. To decipher the molecular regulation of rexinoid signaling in myogenic differentiation, we have integrated RNA-seq transcription profiles with ChIP-seq of H4K8, H3K9, H3K18, H3K27 acetylation, and H3K27 methylation in addition to that of histone acetyl-transferase p300 in rexinoid-promoted myoblast differentiation. Here, we provide details regarding data collection, validation and omics integration analyses to offer strategies for future data application and replication. Our analyses also reveal molecular pathways underlying different patterns of gene expression and p300-associated histone acetylation at distinct chromatin states in rexinoid-enhanced myoblast differentiation. These datasets can be repurposed for future studies to examine the relationship between signaling molecules, chromatin modifiers and histone acetylation in myogenic regulation, providing a framework for discovery and functional characterization of muscle-specific loci.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuan Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in Cell Reprogramming and the Epigenetic Regulations. Front Cell Dev Biol 2021; 9:609984. [PMID: 33585477 PMCID: PMC7876330 DOI: 10.3389/fcell.2021.609984] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular reprogramming is a fundamental topic in the research of stem cells and molecular biology. It is widely investigated and its understanding is crucial for learning about different aspects of development such as cell proliferation, determination of cell fate and stem cell renewal. Other factors involved during development include hypoxia and epigenetics, which play major roles in the development of tissues and organs. This review will discuss the involvement of hypoxia and epigenetics in the regulation of cellular reprogramming and how interplay between each factor can contribute to different cellular functions as well as tissue regeneration.
Collapse
Affiliation(s)
- Nariaki Nakamura
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Radbod Darabi
- The Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), Houston, TX, United States
| | - Yong Li
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
12
|
Inhibition of p300 by Garcinol Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress, Inflammation, and Tubular Cell Death in Mice. Antioxidants (Basel) 2020; 9:antiox9121271. [PMID: 33327548 PMCID: PMC7765028 DOI: 10.3390/antiox9121271] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that epigenetic mechanisms such as histone modification are crucially involved in the pathophysiology of acute kidney injury (AKI). The histone acetyltransferase p300 regulates several biological processes through the acetylation of histones or transcription factors. However, the role of p300 in cisplatin-induced AKI remains poorly understood. Therefore, we investigated the effects of garcinol, a potent p300 inhibitor, on cisplatin-induced AKI and explored the mechanisms. Administration of garcinol significantly reversed the upregulation of p300 and increased acetylation of histone H3, along with amelioration of renal dysfunction and histopathological injury in the kidneys of cisplatin-injected mice. Garcinol also attenuated oxidative stress and reduced expression of pro-oxidant enzymes. In addition, garcinol reduced the elevated production of cytokines and chemokines and suppressed immune cell accumulation together with downregulation of vascular adhesion molecules. These beneficial effects of garcinol were associated with a reduction in acetylation of the p65 subunit of nuclear factor kappa-B. Further, garcinol significantly inhibited apoptosis and caspase-3 activation, with a decrease in p53 acetylation in cisplatin-injected mice. Taken together, we demonstrated that the inhibition of p300 by garcinol ameliorated cisplatin-induced renal injury, presumably through epigenetic mechanisms. These results suggest that garcinol might be a potential preventive agent for cisplatin-induced AKI.
Collapse
|
13
|
Khilji S, Hamed M, Chen J, Li Q. Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation. Commun Biol 2020; 3:315. [PMID: 32555436 PMCID: PMC7303199 DOI: 10.1038/s42003-020-1043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Svensson K, LaBarge SA, Sathe A, Martins VF, Tahvilian S, Cunliffe JM, Sasik R, Mahata SK, Meyer GA, Philp A, David LL, Ward SR, McCurdy CE, Aslan JE, Schenk S. p300 and cAMP response element-binding protein-binding protein in skeletal muscle homeostasis, contractile function, and survival. J Cachexia Sarcopenia Muscle 2020; 11:464-477. [PMID: 31898871 PMCID: PMC7113519 DOI: 10.1002/jcsm.12522] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Jennifer M Cunliffe
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gretchen A Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Joseph E Aslan
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Imeh-Nathaniel A, Orfanakos V, Wormack L, Huber R, Nathaniel TI. The crayfish model (Orconectes rusticus), epigenetics and drug addiction research. Pharmacol Biochem Behav 2019; 183:38-45. [PMID: 31202808 DOI: 10.1016/j.pbb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Fundamental signs of epigenetic effects are variations in the expression of genes or phenotypic traits among isogenic mates. Therefore, genetically identical animals are in high demand for epigenetic research. There are many genetically identical animals, including natural parthenogens and inbred laboratory lineages or clones. However, most parthenogenetic animal taxa are very small in combined epigenetic and drug addiction research. Orconectes rusticus has a unique phylogenetic position, with 2-3 years of life span, which undergoes metamorphosis that creates developmental stages with distinctly different morphologies, unique lifestyles, and broad behavioral traits, even among isogenic mates reared in the same environment offer novel inroads for epigenetics studies. Moreover, the establishment of crayfish as a novel system for drug addiction with evidence of an automated, operant self-administration and conditioned-reward, withdrawal, reinstatement of the conditioned drug-induced reward sets the stage to investigate epigenetic mechanisms of drug addiction. We discuss behavioral, pharmacological and molecular findings from laboratory studies that document a broad spectrum of molecular and, behavioral evidence including potential hypotheses that can be tested with the crayfish model for epigenetic study in drug addiction research.
Collapse
Affiliation(s)
| | | | - Leah Wormack
- University of South Carolina School of Medicine, SC, USA
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | | |
Collapse
|
16
|
Clusterin silencing restores myoblasts viability and down modulates the inflammatory process in osteoporotic disease. J Transl Med 2019; 17:118. [PMID: 30967152 PMCID: PMC6457035 DOI: 10.1186/s12967-019-1868-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Targeting new molecular pathways leading to Osteoporosis (OP) and Osteoarthritis (OA) is a hot topic for drug discovery. Clusterin (CLU) is a glycoprotein involved in inflammation, proliferation, cell death, neoplastic disease, Alzheimer disease and aging. The present study focuses on the expression and the role of CLU in influencing the decrease of muscle mass and fiber senescence in OP-OA condition. Methods Vastus lateralis muscle biopsies were collected from 20 women with OP undergoing surgery for fragility hip fracture and 20 women undergoing arthroplasty for hip osteoarthritis. Results We found an overexpression of CLU in degenerated fibers in OP closely correlated with interleukin 6 (IL6) and histone H4 acetylation level. Conversely, in OA muscle tissues we observed a weak expression of CLU but no nuclear histone H4 acetylation. Ex vivo studies on isolated human myoblasts confirmed CLU overexpression in OP as compared to OA (p < 0.001). CLU treatment of isolated OP and OA myoblasts showed: modulation of proliferation, morphological changes, increase of histone H4 acetylation and induction of myogenin (MYOG) activation in OP myoblast only. In OP condition, functional knockdown of CLU by siRNA restores proliferative myoblasts capability and tissue damage repair, carried out by an evident upregulation of Transglutaminase 2 (TGM2). We also observed downmodulation of CX3CR1 expression with consequent impairing of the inflammatory infiltrate recruitment. Conclusions Results obtained suggest a potential role of CLU in OP by influencing myoblasts terminal differentiation, epigenetic regulation of muscle cell differentiation and senescence. Moreover, CLU silencing points out its role in the modulation of tissue damage repair and inflammation, proposing it as a new diagnostic marker for muscle degeneration and a potential target for specific therapeutic intervention in OP related sarcopenia.
Collapse
|