1
|
Berry JL, Pike S, Shah R, Reid MW, Peng CC, Wang Y, Yellapantula V, Biegel J, Kuhn P, Hicks J, Xu L. Aqueous Humor Liquid Biopsy as a Companion Diagnostic for Retinoblastoma: Implications for Diagnosis, Prognosis, and Therapeutic Options: Five Years of Progress. Am J Ophthalmol 2024; 263:188-205. [PMID: 38040321 PMCID: PMC11148850 DOI: 10.1016/j.ajo.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To define the prospective use of the aqueous humor (AH) as a molecular diagnostic and prognostic liquid biopsy for retinoblastoma (RB). METHODS This is a prospective, observational study wherein an AH liquid biopsy is performed at diagnosis and longitudinally through therapy for patients with RB. Tumor-derived cell-free DNA is isolated and sequenced for single nucleotide variant analysis of the RB1 gene and detection of somatic copy number alterations (SCNAs). The SCNAs are used to determine tumor fraction (TFx). Specific SCNAs, including 6p gain and focal MycN gain, along with TFx, are prospectively correlated with intraocular tumor relapse, response to therapy, and globe salvage. RESULTS A total of 26 eyes of 21 patients were included with AH taken at diagnosis. Successful ocular salvage was achieved in 19 of 26 (73.1%) eyes. Mutational analysis of 26 AH samples identified 23 pathogenic RB1 variants and 2 focal RB1 deletions; variant allele fraction ranged from 30.5% to 100% (median 93.2%). At diagnosis, SCNAs were detectable in 17 of 26 (65.4%) AH samples. Eyes with 6p gain and/or focal MycN gain had significantly greater odds of poor therapeutic outcomes (odds ratio = 6.75, 95% CI = 1.06-42.84, P = .04). Higher AH TFx was observed in eyes with vitreal progression (TFx = 46.0% ± 40.4) than regression (22.0 ± 29.1; difference: -24.0; P = .049). CONCLUSIONS Establishing an AH liquid biopsy for RB is aimed at addressing (1) our inability to biopsy tumor tissue and (2) the lack of molecular biomarkers for intraocular prognosis. Current management decisions for RB are made based solely on clinical features without objective molecular testing. This prognostic study shows great promise for using AH as a companion diagnostic. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Jesse L Berry
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.).
| | - Sarah Pike
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Rachana Shah
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.)
| | - Mark W Reid
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Chen-Ching Peng
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Yingfei Wang
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.); Department of Quantitative and Computational Biology, University of Southern California (Y.W.)
| | - Venkata Yellapantula
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Center for Personalized Medicine, Children's Hospital Los Angeles (V.Y., J.B.)
| | - Jaclyn Biegel
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - James Hicks
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - Liya Xu
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| |
Collapse
|
2
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
3
|
Correlation between Family RB1 Gene Pathogenic Variant with Clinical Features and Prognosis of Retinoblastoma under 5 Years Old. DISEASE MARKERS 2021; 2021:9981028. [PMID: 34336010 PMCID: PMC8292087 DOI: 10.1155/2021/9981028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
Retinoblastoma (RB) is the most common primary intraocular malignant tumor in infants and the prototype of human hereditary tumors. Its occurrence and development are closely related to the pathogenic variant of tumor suppressor RB1 gene. We aim to analyze the characteristics of RB1 gene pathogenic variant and clinical phenotype in retinoblastoma patients and their relatives. Children with RB were recruited from August 2007 to November 2017. QT-PCR, probing, and gene sequencing were used to analyze the sequence of RB1 gene in RB children, their parents, or grandparents with a clear history of illness. The SPSS20.0 software was used to analyze the correlation between polymorphisms of RB1 gene and the incidence and prognosis of the enrolled children and relatives. 40 RB children (20 males and 20 females) were recruited, unilateral RB accounted for 52.5% (21/40), bilateral RB accounted for 42.5% (17/40), and trilateral RB accounted for 5.0% (2/40). 6 patients had a clear family history (15.0%, 6/40). It had been verified that 19 probands (47.5%) have RB1 gene pathogenic variants (11 frameshift and 8 missense pathogenic variants), of which germline inheritance accounted for 47.4% (9/19) and nongermline heredity accounted for 52.6% (10/19). Pathogenic variants of 10 nucleic acid sites without reported were found, among which c.2455C>G (p.L819V) was confirmed to have heterozygous pathogenic variants in both a bilateral RB patient and his mother with unilateral RB. Family genetic high-risk factors, bilateral/trilateral RB, >12-month-onset RB have a higher proportion of RB1 gene pathogenic variant than children with no family history, unilateral RB, and ≤12-month (P = 0.021, 0.001,0.034). The proportion of pedigree inheritance of infantile retinoblastoma with bilateral disease is high. There was a certain proportion of RB1 gene pathogenic variant in 3-5-year-old children with bilateral RB, even if they had no family genetic history. Therefore, the detection of RB1 gene pathogenic variant should not only focus on infants but also on the phenotype of RB1 gene pathogenic variant in children over 3 years old with bilateral eye disease.
Collapse
|
4
|
Sun S, Wang R, Yi S, Li S, Wang L, Wang J. Roles of the microRNA‑338‑3p/NOVA1 axis in retinoblastoma. Mol Med Rep 2021; 23:394. [PMID: 33760207 PMCID: PMC8008220 DOI: 10.3892/mmr.2021.12033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is an intraocular malignancy that mainly affects young children. Previous reports have demonstrated that mutations or the inactivation of the RB1 gene were the main cause of RB; however, disruption of the intracellular signaling pathways following deficiency of RB1 requires further investigation. Based on the Gene Expression Omnibus data and bioinformatics prediction, the present study aimed to investigate the microRNA (miR)-338-3p/neuro-oncological ventral antigen 1 (NOVA1) axis in RB. Subsequently, overexpression and knockdown of miR-338-3p and NOVA1, respectively, were performed to study the role of miR-338-3p/NOVA1 in the progression of the RB cells. The results demonstrated that overexpression of miR-338-3p significantly inhibited cell proliferation, migration and invasion, and promoted apoptosis of the RB cells. Moreover, knockdown of NOVA1 showed similar results. A dual-luciferase reporter assay and rescue experiments further confirmed the direct binding between miR-338-3p and NOVA1. Taken together, the results indicated that miR-338-3p acted as tumor suppressor by targeting the oncogene of NOVA1 in RB, which may serve as potential therapeutic targets in RB.
Collapse
Affiliation(s)
- Shoubin Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Runze Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sisi Yi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sijia Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianwen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
5
|
Xu L, Kim ME, Polski A, Prabakar RK, Shen L, Peng CC, Reid MW, Chévez-Barrios P, Kim JW, Shah R, Jubran R, Kuhn P, Cobrinik D, Biegel JA, Gai X, Hicks J, Berry JL. Establishing the Clinical Utility of ctDNA Analysis for Diagnosis, Prognosis, and Treatment Monitoring of Retinoblastoma: The Aqueous Humor Liquid Biopsy. Cancers (Basel) 2021; 13:1282. [PMID: 33805776 PMCID: PMC8001323 DOI: 10.3390/cancers13061282] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Because direct tumor biopsy is prohibited for retinoblastoma (RB), eye-specific molecular biomarkers are not used in clinical practice for RB. Recently, we demonstrated that the aqueous humor (AH) is a rich liquid biopsy source of cell-free tumor DNA. Herein, we detail clinically-relevant molecular biomarkers from the first year of prospective validation data. Seven eyes from 6 RB patients who had AH sampled at diagnosis and throughout therapy with ≥12 months of follow-up were included. Cell-free DNA (cfDNA) from each sample was isolated and sequenced to assess genome-wide somatic copy number alterations (SCNAs), followed by targeted resequencing for pathogenic variants using a RB1 and MYCN custom hybridization panel. Tumoral genomic information was detected in 100% of diagnostic AH samples. Of the seven diagnostic AH samples, 5/7 were positive for RB SCNAs. Mutational analysis identified RB1 variants in 5/7 AH samples, including the 2 samples in which no SCNAs were detected. Two eyes failed therapy and required enucleation; both had poor prognostic biomarkers (chromosome 6p gain or MYCN amplification) present in the AH at the time of diagnosis. In the context of previously established pre-analytical, analytical, and clinical validity, this provides evidence for larger, prospective studies to further establish the clinical utility of the AH liquid biopsy and its applications to precision oncology for RB.
Collapse
Affiliation(s)
- Liya Xu
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Mary E. Kim
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Polski
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Rishvanth K. Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA;
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.S.); (J.A.B.); (X.G.)
| | - Chen-Ching Peng
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Mark W. Reid
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
| | - Patricia Chévez-Barrios
- Ophthalmic Pathology, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Jonathan W. Kim
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Rachana Shah
- Cancer and Blood Disease Institute at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (R.S.); (R.J.)
| | - Rima Jubran
- Cancer and Blood Disease Institute at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (R.S.); (R.J.)
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - David Cobrinik
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jaclyn A. Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.S.); (J.A.B.); (X.G.)
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.S.); (J.A.B.); (X.G.)
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse L. Berry
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.X.); (M.E.K.); (A.P.); (C.-C.P.); (M.W.R.); (J.W.K.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|