1
|
Campbell B. Recent Research on the Human Biology of Pastoralists. Am J Hum Biol 2025; 37:e24156. [PMID: 39290108 DOI: 10.1002/ajhb.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Despite encroachment by agricultural systems and globalization, pastoral nomads maintain a robust presence in terms of numbers and subsistence activity. At the same time, increasing concern about climate change has promoted awareness that increased climatic fluctuation may push pastoral population past their capacity for resilience. The response of pastoralists to climate change has important implications for our evolutionary past and our increasingly problematic future. Yet, pastoralists have received less explicit attention than foragers as populations under consistent selective constraints including limited caloric intake, high levels of habitual activity, and high disease burdens. Additional factors include exposure to cold and high temperatures, as well as high altitude. Over the last 20 or so years, the use of new techniques for measuring energetics, including actigraphs and doubly labeled water have built on existing noninvasive sample collection for hormones, immune markers and genes to provide a more detailed picture of the human biology of pastoral populations. Here I consider recent work on pastoralists from Siberia and northern Europe, Africa, Asia, and South America. I survey what is known about maternal milk composition and infant health, childhood growth, lactase persistence, and adult energy expenditure and lactase persistence to build a picture of the pastoralist biological response to environmental conditions, including heat, cold, and high altitude. Where available I include information about population history because of its importance for selection. I end by outlining the impact of milk consumption and climate over the human life cycle and make suggestions for further research.
Collapse
Affiliation(s)
- Benjamin Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
3
|
Qiao X, Straight B, Ngo D, Hilton CE, Owuor Olungah C, Naugle A, Lalancette C, Needham BL. Severe drought exposure in utero associates to children's epigenetic age acceleration in a global climate change hot spot. Nat Commun 2024; 15:4140. [PMID: 38755138 PMCID: PMC11099019 DOI: 10.1038/s41467-024-48426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The goal of this study is to examine the association between in utero drought exposure and epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA in adults using DNA methylation have been found to accurately predict chronic disease and longevity. However, fewer studies have examined EAA in children, and drought exposure in utero has not been investigated. Additionally, studies of EAA in low-income countries with diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 109 same-sex sibling controls in northern Kenya. We find a positive association between in utero drought exposure and EAA in two epigenetic clocks (Hannum's and GrimAge) and a negative association in the DNAm based telomere length (DNAmTL) clock. The combined impact of drought's multiple deleterious stressors may reduce overall life expectancy through accelerated epigenetic aging.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Bilinda Straight
- School of Environment, Geography, & Sustainability, Western Michigan University, Kalamazoo, MI, USA.
| | - Duy Ngo
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Charles E Hilton
- Department of Anthropology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Charles Owuor Olungah
- Department of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, MI, USA
| | | | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Cardenas A, Fadadu R, Bunyavanich S. Climate change and epigenetic biomarkers in allergic and airway diseases. J Allergy Clin Immunol 2023; 152:1060-1072. [PMID: 37741554 PMCID: PMC10843253 DOI: 10.1016/j.jaci.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif.
| | - Raj Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
6
|
Rosinger AY. Extreme climatic events and human biology and health: A primer and opportunities for future research. Am J Hum Biol 2023; 35:e23843. [PMID: 36449411 PMCID: PMC9840683 DOI: 10.1002/ajhb.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Extreme climatic events are increasing in frequency, leading to hotter temperatures, flooding, droughts, severe storms, and rising oceans. This special issue brings together a collection of seven articles that describe the impacts of extreme climatic events on a diverse set of human biology and health outcomes. The first two articles cover extreme temperatures extending from extreme heat to cold and changes in winter weather and the respective implications for adverse health events, human environmental limits, well-being, and human adaptability. Next, two articles cover the effects of exposures to extreme storms through an examination of hurricanes and cyclones on stress and birth outcomes. The following two articles describe the effects of extreme flooding events on livelihoods, nutrition, water and food insecurity, diarrheal and respiratory health, and stress. The last article examines the effects of drought on diet and food insecurity. Following a brief review of each extreme climatic event and articles covered in this special issue, I discuss future research opportunities-highlighting domains of climate change and specific research questions that are ripe for biological anthropologists to investigate. I close with a description of interdisciplinary methods to assess climate exposures and human biology outcomes to aid the investigation of the defining question of our time - how climate change will affect human biology and health. Ultimately, climate change is a water, food, and health problem. Human biologists offer a unique perspective for a combination of theoretical, methodological, and applied reasons and thus are in a prime position to contribute to this critical research agenda.
Collapse
Affiliation(s)
- Asher Y. Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Skinner MK. Environmental epigenetics and climate change. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac028. [PMID: 36694710 PMCID: PMC9869649 DOI: 10.1093/eep/dvac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|