1
|
Li N, Liu HY, Liu SM. Deciphering DNA Methylation in Gestational Diabetes Mellitus: Epigenetic Regulation and Potential Clinical Applications. Int J Mol Sci 2024; 25:9361. [PMID: 39273309 PMCID: PMC11394902 DOI: 10.3390/ijms25179361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) represents a prevalent complication during pregnancy, exerting both short-term and long-term impacts on maternal and offspring health. This review offers a comprehensive outline of DNA methylation modifications observed in various maternal and offspring tissues affected by GDM, emphasizing the intricate interplay between DNA methylation dynamics, gene expression, and the pathogenesis of GDM. Furthermore, it explores the influence of environmental pollutants, maternal nutritional supplementation, and prenatal gut microbiota on GDM development through alterations in DNA methylation profiles. Additionally, this review summarizes recent advancements in DNA methylation-based diagnostics and predictive models in early GDM detection and risk assessment for subsequent type 2 diabetes. These insights contribute significantly to our understanding of the epigenetic mechanisms underlying GDM development, thereby enhancing maternal and fetal health outcomes and advocating further efforts in this field.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Huan-Yu Liu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| |
Collapse
|
2
|
Linares-Pineda TM, Fragoso-Bargas N, Picón MJ, Molina-Vega M, Jenum AK, Sletner L, Lee-Ødegård S, Opsahl JO, Moen GH, Qvigstad E, Prasad RB, Birkeland KI, Morcillo S, Sommer C. DNA methylation risk score for type 2 diabetes is associated with gestational diabetes. Cardiovasc Diabetol 2024; 23:68. [PMID: 38350951 PMCID: PMC10865541 DOI: 10.1186/s12933-024-02151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM) share many pathophysiological factors including genetics, but whether epigenetic marks are shared is unknown. We aimed to test whether a DNA methylation risk score (MRS) for T2DM was associated with GDM across ancestry and GDM criteria. METHODS In two independent pregnancy cohorts, EPIPREG (n = 480) and EPIDG (n = 32), DNA methylation in peripheral blood leukocytes was measured at a gestational age of 28 ± 2. We constructed an MRS in EPIPREG and EPIDG based on CpG hits from a published epigenome-wide association study (EWAS) of T2DM. RESULTS With mixed models logistic regression of EPIPREG and EPIDG, MRS for T2DM was associated with GDM: odd ratio (OR)[95% CI]: 1.3 [1.1-1.8], P = 0.002 for the unadjusted model, and 1.4 [1.1-1.7], P = 0.00014 for a model adjusted by age, pre-pregnant BMI, family history of diabetes and smoking status. Also, we found 6 CpGs through a meta-analysis (cg14020176, cg22650271, cg14870271, cg27243685, cg06378491, cg25130381) associated with GDM, and some of their methylation quantitative loci (mQTLs) were related to T2DM and GDM. CONCLUSION For the first time, we show that DNA methylation marks for T2DM are also associated with GDM, suggesting shared epigenetic mechanisms between GDM and T2DM.
Collapse
Affiliation(s)
- Teresa M Linares-Pineda
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
- Department of Biochemistry and Molecular Biology 2, University of Granada, Granada, Spain
- Centre for Biomedical Research Network on Obesity Physiopathology and Nutrition (CIBEROBN), Madrid, Spain
| | - Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - María José Picón
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
| | - Maria Molina-Vega
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Haukeland University Hospital, Bergen, Norway
| | - Gunn-Helen Moen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
- K. G Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Malmo, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sonsoles Morcillo
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
- Centre for Biomedical Research Network on Obesity Physiopathology and Nutrition (CIBEROBN), Madrid, Spain
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway.
| |
Collapse
|