1
|
Sarangle Y, Bamel K, Purty RS. Role of acetylcholine and acetylcholinesterase in improving abiotic stress resistance/tolerance. Commun Integr Biol 2024; 17:2353200. [PMID: 38827581 PMCID: PMC11141473 DOI: 10.1080/19420889.2024.2353200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Abiotic stress that plants face may impact their growth and limit their productivity. In response to abiotic stress, several endogenous survival mechanisms get activated, including the synthesis of quaternary amines in plants. Acetylcholine (ACh), a well-known quaternary amine, and its components associated with cholinergic signaling are known to contribute to a variety of physiological functions. However, their role under abiotic stress is not well documented. Even after several studies, there is a lack of a comprehensive understanding of how cholinergic components mitigate abiotic stress in plants. Acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE) belongs to the GDSL lipase/acylhydrolase protein family and has been found in several plant species. Several studies have demonstrated that GDSL members are involved in growth, development, and abiotic stress. This review summarizes all the possible mitigating effects of the ACh-AChE system on abiotic stress tolerance and will try to highlight all the progress made so far in this field.
Collapse
Affiliation(s)
- Yashika Sarangle
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Kiran Bamel
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
2
|
Yamamoto K, Momonoki YS. Identification and molecular characterization of propionylcholinesterase, a novel pseudocholinesterase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1961062. [PMID: 34334124 PMCID: PMC8525928 DOI: 10.1080/15592324.2021.1961062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
3
|
Qin C, Ahanger MA, Lin B, Huang Z, Zhou J, Ahmed N, Ai S, Mustafa NSA, Ashraf M, Zhang L. Comparative transcriptome analysis reveals the regulatory effects of acetylcholine on salt tolerance of Nicotiana benthamiana. PHYTOCHEMISTRY 2021; 181:112582. [PMID: 33246307 DOI: 10.1016/j.phytochem.2020.112582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Salinity is a major cause of crop losses worldwide. Acetylcholine (ACh) can ameliorate the adverse effects of abiotic stresses on plant growth, including salinity stress; however, the underlying molecular mechanisms of this process are unclear. Here, seedlings of Nicotiana benthamiana grown under normal conditions or exposed to 150 mmol L-1 NaCl salinity stress were then treated with a root application of 10 μM ACh. Exogenous ACh application resulted in the downregulation of the activity of the antioxidant enzymes, ascorbate peroxidase, and catalase. ACh-treated plants had lower levels of reactive oxygen species, including the superoxide anion radical and hydrogen peroxide. Transcriptome analysis indicated that ACh treatment under salt stress promoted the differential expression of 658 genes in leaves of N. benthamiana (527 were upregulated and 131 were downregulated). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that exogenous ACh application was associated with a substantial increase in the transcripts of genes related to cell wall peroxidases, xyloglucan endotransglucosylases or hydrolases, and expansins, indicating that ACh activates cell wall biosynthesis in salt-stressed plants. ACh also enhanced the expression of genes associated with the auxin, gibberellin, brassinosteroid, and salicylic acid signalling pathways, indicating that ACh induces the activation of these pathways under salt stress. Collectively, these findings indicate that ACh-induced salt tolerance in N. benthamiana seedlings is mediated by the inhibition of antioxidant enzymes, activation of cell wall biosynthesis, and hormone signalling pathways. Stress-induced genes involved in osmotic regulation and oxidation resistance were induced by ACh under salt stress. The genes whose transcript levels were elevated by ACh treatment in salt-stressed N. benthamiana could be used as molecular markers of the physiological status of plants under salt stress.
Collapse
Affiliation(s)
- Cheng Qin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Mohammad Abass Ahanger
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Bo Lin
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Ziguang Huang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Jie Zhou
- Cangzhou Central Hospital, 061000 Cangzhou, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China
| | - Suilong Ai
- Shaanxi Tobacco Scientific Institution, 71000, Xi'an, China
| | - Nabil S A Mustafa
- Department of Pomology, National Research Centre, 12622 Cairo, Egypt
| | - Muhammad Ashraf
- University of Agriculture, Faisalabad, 38000 Faisalabad, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest Agriculture & Forestry University, 712100, Yangling, China.
| |
Collapse
|
4
|
Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1737450. [PMID: 32375557 PMCID: PMC8570756 DOI: 10.1080/15592324.2020.1737450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
Neurotransmitters (NTs) such as acetylcholine, biogenic amines (dopamine, noradrenaline, adrenaline, histamine), indoleamines [(melatonin (MEL) & serotonin (SER)] have been found not only in mammalians, but also in diverse living organisms-microorganisms to plants. These NTs have emerged as potential signaling molecules in the last decade of investigations in various plant systems. NTs have been found to play important roles in plant life including-organogenesis, flowering, ion permeability, photosynthesis, circadian rhythm, reproduction, fruit ripening, photomorphogenesis, adaptation to environmental changes. This review will provide an overview of recent advancements on the physiological and molecular mechanism of NTs in plants. Moreover, molecular crosstalk of SER and MEL with various biomolecules is also discussed. The study of these NTs may serve as new understanding of the mechanisms of signal transmission and cell sensing in plants subjected to various environmental stimulus.
Collapse
Affiliation(s)
- Ramakrishna Akula
- Bayer Crop Science division, Vegetable R & D Department, Chikkaballapur, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani, India
| |
Collapse
|