1
|
Hung JC, Li NJ, Peng CY, Yang CC, Ko SS. Safe Farming: Ultrafine Bubble Water Reduces Insect Infestation and Improves Melon Yield and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:537. [PMID: 38498517 PMCID: PMC10891724 DOI: 10.3390/plants13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Melon pest management relies on the excessive application of pesticides. Reducing pesticide spraying has become a global issue for environmental sustainability and human health. Therefore, developing a new cropping system that is sustainable and eco-friendly is important. This study found that melon seedlings irrigated with ultrafine water containing H2 and O2 (UFW) produced more root hairs, increased shoot height, and produced more flowers than the control irrigated with reverse osmosis (RO) water. Surprisingly, we also discovered that UFW irrigation significantly reduced aphid infestation in melons. Based on cryo-scanning electron microscope (cryo-SEM) observations, UFW treatment enhanced trichome development and prevented aphid infestation. To investigate whether it was H2 or O2 that helped to deter insect infestation, we prepared UF water enrichment of H2 (UF+H2) and O2 (UF+O2) separately and irrigated melons. Cryo-SEM results indicated that both UF+H2 and UF+O2 can increase the density of trichomes in melon leaves and petioles. RT-qPCR showed that UF+H2 significantly increased the gene expression level of the trichome-related gene GLABRA2 (GL2). We planted melons in a plastic greenhouse and irrigated them with ultrafine water enrichment of hydrogen (UF+H2) and oxygen (UF+O2). The SPAD value, photosynthetic parameters, root weight, fruit weight, and fruit sweetness were all better than the control without ultrafine water irrigation. UFW significantly increased trichome development, enhanced insect resistance, and improved fruit traits. This system thus provides useful water management for pest control and sustainable agricultural production.
Collapse
Affiliation(s)
- Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ning-Juan Li
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Yen Peng
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Chieh Yang
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| |
Collapse
|
2
|
Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int J Mol Sci 2022; 23:ijms231911512. [PMID: 36232825 PMCID: PMC9569437 DOI: 10.3390/ijms231911512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Horticultural products display fast senescence after harvest at ambient temperatures, resulting in decreased quality and shorter shelf life. As a gaseous signal molecule, nitric oxide (NO) has an important physiological effect on plants. Specifically, in the area of NO and its regulation of postharvest senescence, tremendous progress has been made. This review summarizes NO synthesis; the effect of NO in alleviating postharvest senescence; the mechanism of NO-alleviated senescence; and its interactions with other signaling molecules, such as ethylene (ETH), abscisic acid (ABA), melatonin (MT), hydrogen sulfide (H2S), hydrogen gas (H2), hydrogen peroxide (H2O2), and calcium ions (Ca2+). The aim of this review is to provide theoretical references for the application of NO in postharvest senescence in horticultural products.
Collapse
|
3
|
Yun F, Huang D, Zhang M, Wang C, Deng Y, Gao R, Hou X, Liu Z, Liao W. Comprehensive transcriptome analysis unravels the crucial genes during adventitious root development induced by carbon monoxide in Cucumis sativus L. Mol Biol Rep 2022; 49:11327-11340. [PMID: 35906509 DOI: 10.1007/s11033-022-07797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Carbon monoxide (CO) has been reported to be participated in adventitious rooting. However, knowledge about the interrelationship between CO and phytohormones during rooting is obscure. The molecular mechanism of CO-induced rooting is currently unclear. METHODS AND RESULTS The roles of CO in adventitious rooting in Cucumis sativus L. at the transcriptional level were investigated. The results show that 10 μM hematin (a CO donor) has a significant positive effect on adventitious rooting in cucumber. A total of 1792 differentially expressed genes (DEGs; 1103 up-regulated and 689 down-regulated) were identified in hematin treatment by RNA sequencing analysis. There were 37, 18 and 19 DEGs significantly enriched in plant hormone signal transduction, sucrose and starch metabolism, and phenylalanine metabolism, respectively. Both transcriptome and real-time quantitative PCR results showed that the expressions of AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A and TIF9 promoted the accumulation of IAA, BR, JA and SA in plant hormone signal transduction. The up-regulation of HK3, TPPF, otsB, TPS7, TPS9 and the down-regulation of AGPS1, AGPS3 increased the content of starch and total sugar by mediating the activity of some critical enzymes, including HK, TPS, TPP and AGP. PER47, PER61, PER24, PER66, PER4 and CCR2 increased the lignin content. CONCLUSION Our results suggest that CO could promote the accumulation of plant hormones, starch, sugar and lignin during adventitious rooting by regulating the expression of some related genes, including AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A, TIF9 HK3, otsB, TPS7, TPS9, AGPS1, AGPS3, PER47, PER61, PER24, PER66, PER4, and CCR2. Thus, we provides an interesting candidate gene list for further studies on the molecular mechanisms of adventitious rooting.
Collapse
Affiliation(s)
- Fahong Yun
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Peralta Ogorek LL, Pellegrini E, Pedersen O. Novel functions of the root barrier to radial oxygen loss - radial diffusion resistance to H 2 and water vapour. THE NEW PHYTOLOGIST 2021; 231:1365-1376. [PMID: 34013633 DOI: 10.1111/nph.17474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 05/25/2023]
Abstract
The root barrier to radial O2 loss (ROL) is a trait enabling waterlogging tolerance of plants. The ROL barrier restricts O2 diffusion to the anoxic soil so that O2 is retained inside root tissues. We hypothesised that the ROL barrier can also restrict radial diffusion of other gases (H2 and water vapour) in rice roots with a barrier to ROL. We used O2 and H2 microsensors to measure ROL and permeability of rice roots, and gravimetric measurements to assess the influence of the ROL barrier on radial water loss (RWL). The ROL barrier greatly restricted radial diffusion of O2 as well as H2 . At 60 kPa pO2 , we found no radial diffusion of O2 across the barrier, and for H2 the barrier reduced radial diffusion by 73%. Similarly, RWL was reduced by 93% in roots with a ROL barrier. Our study showed that the root barrier to ROL not only completely blocks radial O2 diffusion under steep concentration gradients but is also a diffusive barrier to H2 and to water vapour. The strong correlation between ROL and RWL presents a case in which simple measurements of RWL can be used to predict ROL in screening studies with a focus on waterlogging tolerance.
Collapse
Affiliation(s)
- Lucas León Peralta Ogorek
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen, 2100, Denmark
| | - Elisa Pellegrini
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen, 2100, Denmark
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen, 2100, Denmark
| |
Collapse
|
5
|
Wu Q, Su N, Huang X, Ling X, Yu M, Cui J, Shabala S. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:771-778. [PMID: 32522330 DOI: 10.1071/fp19107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
The aim of this study was to investigate effects of the hydrogen-rich water (HRW) on the vegetable growth, and explore the possibility of applying HRW for protected cultivation of vegetables. Results showed that compared with control, HRW treatment significantly promoted fresh weight, hypocotyl length and root length of mung bean seedlings. The strongest stimulation was observed for 480 μM H2 (60% of saturated HRW concentration) treatment. This concentration was used in the following experiments. The enhanced cell elongation was correlated with the changes in the level of endogenous phytohormones. In the dark-grown hypocotyls and roots of mung bean seedlings, HRW significantly increased the content of IAA and GA3. Addition of GA3 enhanced the hypocotyl elongation only. uniconazole, an inhibitor of GA3 biosynthesis, inhibited HRW-induced hypocotyl elongation, but did not affect root elongation. Exogenous application of IAA promoted HRW effects on elongation of both the hypocotyl and the root, while the IAA biosynthesis inhibitor TIBA negated the above affects. The general nature of HRW-induced growth-promoting effects was further confirmed in experiments involving cucumber and radish seedlings. Taken together, HRW treatment promoted growth of seedlings, by stimulating elongation of hypocotyl and root cells, via HRW-induced increase in GA and IAA content in the hypocotyl and the root respectively.
Collapse
Affiliation(s)
- Qi Wu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Xiaoping Ling
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding authors. ;
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Corresponding authors. ;
| |
Collapse
|