1
|
Duarte-Batista P, Coelho M, Quintas S, Levy P, Castro Caldas A, Gonçalves-Ferreira A, Carvalho H, Cattoni MB. Anterior Limb of Internal Capsule and Bed Nucleus of Stria Terminalis Stimulation for Gilles de la Tourette Syndrome with Obsessive-Compulsive Disorder in Adolescence: A Case of Success. Stereotact Funct Neurosurg 2020; 98:95-103. [PMID: 32209787 DOI: 10.1159/000505702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
Gilles de la Tourette syndrome (GTS) is a neurobehavioral disorder comprising motor and vocal tics. In most cases it is associated with other disorders such as obsessive-compulsive disorder (OCD). In refractory cases deep brain stimulation (DBS) is a valid treatment option. This paper describes the case of a 15-year-old adolescent with an extremely refractory GTS with associated OCD. The patient developed catatonia associated with OCD, which partially remitted after electroconvulsive therapy. At the peak of the disease the Yale Global Tic Severity Scale (YGTSS) was 100 and the patient required sedation and intubation. All medical treatment options were unsuccessful. Bilateral DBS of the anterior limb of internal capsule (ALIC)/bed nucleus of stria terminalis (BST) region was performed, using a target below the BST and a trajectory through the ALIC, with stimulation of contacts 0 and 3. Two weeks after surgery sedatives were suspended and the patient was successfully extubated. One year after surgery the patient reached a YGTSS of 19, representing an 81% improvement. OCD completely resolved. Adverse events were a superficial infection and weight gain. In conclusion, this ALIC/BST stimulation appears to have been an effective and safe treatment for GTS with OCD in this case. Young age should not be an exclusion criterion for DBS in severe GTS and OCD. Further studies should be pursued for this target.
Collapse
Affiliation(s)
- Pedro Duarte-Batista
- Department of Neurosurgery, Centro Hospitalar Lisboa Norte, Lisbon, Portugal, .,Institute of Anatomy, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal,
| | - Miguel Coelho
- Department of Neurology, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Sofia Quintas
- Department of Pediatric Neurology, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Pedro Levy
- Department of Psychiatry, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana Castro Caldas
- Department of Neurology, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Campus Neurológico Sénior, Torres Vedras, Portugal
| | - António Gonçalves-Ferreira
- Department of Neurosurgery, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Institute of Anatomy, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal
| | - Herculano Carvalho
- Department of Neurosurgery, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | | |
Collapse
|
2
|
Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat 2019; 15:1061-1075. [PMID: 31114210 PMCID: PMC6497003 DOI: 10.2147/ndt.s139368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.
Collapse
Affiliation(s)
- Sara C B Casagrande
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Rubens G Cury
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Eduardo J L Alho
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| | - Erich Talamoni Fonoff
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
3
|
Akbarian-Tefaghi L, Zrinzo L, Foltynie T. The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sci 2016; 6:brainsci6030035. [PMID: 27548235 PMCID: PMC5039464 DOI: 10.3390/brainsci6030035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials.
Collapse
Affiliation(s)
- Ladan Akbarian-Tefaghi
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
4
|
Baldermann JC, Schüller T, Huys D, Becker I, Timmermann L, Jessen F, Visser-Vandewalle V, Kuhn J. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis. Brain Stimul 2015; 9:296-304. [PMID: 26827109 DOI: 10.1016/j.brs.2015.11.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A significant proportion of patients with Tourette syndrome (TS) continue to experience symptoms across adulthood that in severe cases fail to respond to standard therapies. For these cases, deep brain stimulation (DBS) is emerging as a promising treatment option. OBJECTIVE We conducted a systematic literature review to evaluate the efficacy of DBS for GTS. METHODS Individual data of case reports and series were pooled; the Yale Global Tic Severity Scale (YGTSS) was chosen as primary outcome parameter. RESULTS In total, 57 studies were eligible, including 156 cases. Overall, DBS resulted in a significant improvement of 52.68% (IQR = 40.74, p < 0.001) in the YGTSS. Analysis of controlled studies significantly favored stimulation versus off stimulation with a standardized mean difference of 0.96 (95% CI: 0.36-1.56). Disentangling different target points revealed significant YGTSS reductions after stimulation of the thalamus, the posteroventrolateral part and the anteromedial part of the globus pallidus internus, the anterior limb of the internal capsule and nucleus accumbens with no significant difference between these targets. A significant negative correlation of preoperative tic scores with the outcome of thalamic stimulation was found. CONCLUSIONS Despite small patient numbers, we conclude that DBS for GTS is a valid option for medically intractable patients. Different brain targets resulted in comparable improvement rates, indicating a modulation of a common network. Future studies might focus on a better characterization of the clinical effects of distinct regions, rather than searching for a unique target.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
5
|
Coffey BJ. Complexities for Assessment and Treatment of Co-Occurring ADHD and Tics. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2015. [DOI: 10.1007/s40474-015-0061-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
7
|
Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WSJ, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 2015; 58:186-210. [PMID: 25684727 DOI: 10.1016/j.neubiorev.2015.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Suelen L Boschen
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Charles D Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
8
|
Neuner I. Neural Circuit Abnormalities in Tourette Syndrome. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Neuner I, Werner CJ, Arrubla J, Stöcker T, Ehlen C, Wegener HP, Schneider F, Shah NJ. Imaging the where and when of tic generation and resting state networks in adult Tourette patients. Front Hum Neurosci 2014; 8:362. [PMID: 24904391 PMCID: PMC4035756 DOI: 10.3389/fnhum.2014.00362] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/12/2014] [Indexed: 01/14/2023] Open
Abstract
Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with the core phenomenon of tics, whose origin and temporal pattern are unclear. We investigated the When and Where of tic generation and resting state networks (RSNs) via functional magnetic resonance imaging (fMRI). Methods: Tic-related activity and the underlying RSNs in adult TS were studied within one fMRI session. Participants were instructed to lie in the scanner and to let tics occur freely. Tic onset times, as determined by video-observance were used as regressors and added to preceding time-bins of 1 s duration each to detect prior activation. RSN were identified by independent component analysis (ICA) and correlated to disease severity by the means of dual regression. Results: Two seconds before a tic, the supplementary motor area (SMA), ventral primary motor cortex, primary sensorimotor cortex and parietal operculum exhibited activation; 1 s before a tic, the anterior cingulate, putamen, insula, amygdala, cerebellum and the extrastriatal-visual cortex exhibited activation; with tic-onset, the thalamus, central operculum, primary motor and somatosensory cortices exhibited activation. Analysis of resting state data resulted in 21 components including the so-called default-mode network. Network strength in those regions in SMA of two premotor ICA maps that were also active prior to tic occurrence, correlated significantly with disease severity according to the Yale Global Tic Severity Scale (YGTTS) scores. Discussion: We demonstrate that the temporal pattern of tic generation follows the cortico-striato-thalamo-cortical circuit, and that cortical structures precede subcortical activation. The analysis of spontaneous fluctuations highlights the role of cortical premotor structures. Our study corroborates the notion of TS as a network disorder in which abnormal RSN activity might contribute to the generation of tics in SMA.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Aachen, Germany ; JARA - Translational Brain Medicine Aachen, Germany
| | - Cornelius J Werner
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany ; Department of Neurology, RWTH Aachen University Aachen, Germany
| | - Jorge Arrubla
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Aachen, Germany
| | - Tony Stöcker
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany ; JARA - Translational Brain Medicine Aachen, Germany
| | - Corinna Ehlen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Aachen, Germany
| | - Hans P Wegener
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Aachen, Germany ; JARA - Translational Brain Medicine Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH Jülich, Germany ; JARA - Translational Brain Medicine Aachen, Germany ; Department of Neurology, RWTH Aachen University Aachen, Germany
| |
Collapse
|
10
|
Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP. The thalamostriatal system in normal and diseased states. Front Syst Neurosci 2014; 8:5. [PMID: 24523677 PMCID: PMC3906602 DOI: 10.3389/fnsys.2014.00005] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/11/2014] [Indexed: 11/13/2022] Open
Abstract
Because of our limited knowledge of the functional role of the thalamostriatal system, this massive network is often ignored in models of the pathophysiology of brain disorders of basal ganglia origin, such as Parkinson's disease (PD). However, over the past decade, significant advances have led to a deeper understanding of the anatomical, electrophysiological, behavioral and pathological aspects of the thalamostriatal system. The cloning of the vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2) has provided powerful tools to differentiate thalamostriatal from corticostriatal glutamatergic terminals, allowing us to carry out comparative studies of the synaptology and plasticity of these two systems in normal and pathological conditions. Findings from these studies have led to the recognition of two thalamostriatal systems, based on their differential origin from the caudal intralaminar nuclear group, the center median/parafascicular (CM/Pf) complex, or other thalamic nuclei. The recent use of optogenetic methods supports this model of the organization of the thalamostriatal systems, showing differences in functionality and glutamate receptor localization at thalamostriatal synapses from Pf and other thalamic nuclei. At the functional level, evidence largely gathered from thalamic recordings in awake monkeys strongly suggests that the thalamostriatal system from the CM/Pf is involved in regulating alertness and switching behaviors. Importantly, there is evidence that the caudal intralaminar nuclei and their axonal projections to the striatum partly degenerate in PD and that CM/Pf deep brain stimulation (DBS) may be therapeutically useful in several movement disorders.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - Adriana Galvan
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - Tommas J. Ellender
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| | - Natalie Doig
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| | - Rosa M. Villalba
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | | | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Department of Neurology, Emory UniversityAtlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease, Emory UniversityAtlanta, GA, USA
| | - J. Paul Bolam
- Department of Pharmacology, MRC Anatomical Neuropharmacology UnitOxford, UK
| |
Collapse
|
11
|
Kim JP, Min HK, Knight EJ, Duffy PS, Abulseoud OA, Marsh MP, Kelsey K, Blaha CD, Bennet KE, Frye MA, Lee KH. Centromedian-parafascicular deep brain stimulation induces differential functional inhibition of the motor, associative, and limbic circuits in large animals. Biol Psychiatry 2013; 74:917-926. [PMID: 23993641 PMCID: PMC3910443 DOI: 10.1016/j.biopsych.2013.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. METHODS The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). RESULTS Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. CONCLUSIONS Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms.
Collapse
Affiliation(s)
- Joo Pyung Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Department of Neurosurgery, CHA University, Bundang CHA Medical Center, Sungnam, Republic of Korea
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Division of Engineering, Mayo Clinic, Rochester, Minnesota, USA, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily J. Knight
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Penelope S. Duffy
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael P. Marsh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine Kelsey
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D. Blaha
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Division of Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Motlagh MG, Smith ME, Landeros-Weisenberger A, Kobets AJ, King RA, Miravite J, de Lotbinière ACJ, Alterman RL, Mogilner AY, Pourfar MH, Okun MS, Leckman JF. Lessons Learned from Open-label Deep Brain Stimulation for Tourette Syndrome: Eight Cases over 7 Years. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2013; 3. [PMID: 24255802 PMCID: PMC3822402 DOI: 10.7916/d8m32tgm] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/23/2013] [Indexed: 12/26/2022]
Abstract
Background Deep brain stimulation (DBS) remains an experimental but promising treatment for patients with severe refractory Gilles de la Tourette syndrome (TS). Controversial issues include the selection of patients (age and clinical presentation), the choice of brain targets to obtain optimal patient-specific outcomes, and the risk of surgery- and stimulation-related serious adverse events. Methods This report describes our open-label experience with eight patients with severe refractory malignant TS treated with DBS. The electrodes were placed in the midline thalamic nuclei or globus pallidus, pars internus, or both. Tics were clinically assessed in all patients pre- and postoperatively using the Modified Rush Video Protocol and the Yale Global Tic Severity Scale (YGTSS). Results Although three patients had marked postoperative improvement in their tics (>50% improvement on the YGTSS), the majority did not reach this level of clinical improvement. Two patients had to have their DBS leads removed (one because of postoperative infection and another because of lack of benefit). Discussion Our clinical experience supports the urgent need for more data and refinements in interventions and outcome measurements for severe, malignant, and medication-refractory TS. Because TS is not an etiologically homogenous clinical entity, the inclusion criteria for DBS patients and the choice of brain targets will require more refinement.
Collapse
Affiliation(s)
- Maria G Motlagh
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Höflich A, Savli M, Comasco E, Moser U, Novak K, Kasper S, Lanzenberger R. Neuropsychiatric deep brain stimulation for translational neuroimaging. Neuroimage 2013; 79:30-41. [DOI: 10.1016/j.neuroimage.2013.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
|
14
|
Neuner I, Schneider F, Shah NJ. Functional Neuroanatomy of Tics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:35-71. [DOI: 10.1016/b978-0-12-411546-0.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
15
|
Piedimonte F, Andreani JCM, Piedimonte L, Graff P, Bacaro V, Micheli F, Vilela Filho O. Behavioral and motor improvement after deep brain stimulation of the globus pallidus externus in a case of Tourette's syndrome. Neuromodulation 2012; 16:55-8; discussion 58. [PMID: 23240689 DOI: 10.1111/j.1525-1403.2012.00526.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/16/2012] [Accepted: 08/19/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The objective of our paper is to show the partial decrease of therapeutic effect with battery exhaustion in a previously successfully treated patient with refractory Tourette's syndrome (TS). MATERIALS AND METHODS We present a 47-year-old patient diagnosed with TS based on the TS Study Group Criteria and Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Surgery was considered based on refractoriness to conservative management. Presurgical evaluation included magnetic resonance imaging (MRI), positron emission tomography scan, and neuropsychologic, neurologic, and psychiatric tests utilizing Yale Brown Obsessive Compulsive Scale, Yale Global Tics Severity Scale, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Global Assessment of Functioning Scale, and Mini-mental State Examination. Target coordinates were obtained from inversion recovery MRI. Quadripolar deep brain stimulation (DBS) electrodes were implanted bilaterally in the globus pallidus externus (GPe) and connected to the pulse generator in the same procedure. To determine the clinical response to DBS, the scores of the scales obtained preoperatively were compared with those obtained postoperatively. RESULTS No surgical complications were detected and according to the clinical scales the patient experienced a marked improvement of his symptoms, although he never showed obsessive-compulsive disorder components of any type. The battery was exhausted after two years with the subsequent significant partial loss of therapeutic effect. CONCLUSIONS GPe seems to be a highly promising target of DBS for the treatment of medically refractory TS. After battery exhaustion, the patient experienced a marked partial decrease in the therapeutic effect, which confirms the beneficial action of this method.
Collapse
Affiliation(s)
- Fabián Piedimonte
- Fundacion CENIT para la Investigación en Neurociencias, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Porta M, Sassi M, Menghetti C, Servello D. The need for a proper definition of a "treatment refractoriness" in tourette syndrome. Front Integr Neurosci 2011; 5:22. [PMID: 21713108 PMCID: PMC3112313 DOI: 10.3389/fnint.2011.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/09/2011] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mauro Porta
- Functional Neurosurgical Unit, IRCCS Galeazzi Milano, Italy
| | | | | | | |
Collapse
|
17
|
Sassi M, Porta M, Servello D. Deep brain stimulation therapy for treatment-refractory Tourette's syndrome: A review. Acta Neurochir (Wien) 2011; 153:639-45. [PMID: 20853121 DOI: 10.1007/s00701-010-0803-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/08/2010] [Indexed: 11/24/2022]
Abstract
Tourette's syndrome is a chronic neurobehavioral disorder that can demonstrate refractoriness to conservative treatments, or to invasive nonsurgical treatments such as botulinum toxin infiltration, or to psychobehavioral treatments. In these cases, the surgical option is often proposed, either with lesional interventions, or more recently with deep brain stimulation (DBS). This latter modality is currently preferred because of its reversibility and modularity. Some relevant issues, however, still persist in terms of appropriate indication to treatment, selection of target, and follow-up evaluation.
Collapse
Affiliation(s)
- Marco Sassi
- Functional Neurosurgery Unit, IRCCS Galeazzi, Via Galeazzi 4, 20161, Milan, Italy.
| | | | | |
Collapse
|
18
|
Microstructure assessment of grey matter nuclei in adult tourette patients by diffusion tensor imaging. Neurosci Lett 2011; 487:22-6. [DOI: 10.1016/j.neulet.2010.09.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 01/18/2023]
|
19
|
Cavanna AE, Eddy CM, Mitchell R, Pall H, Mitchell I, Zrinzo L, Foltynie T, Jahanshahi M, Limousin P, Hariz MI, Rickards H. An approach to deep brain stimulation for severe treatment-refractory Tourette syndrome: the UK perspective. Br J Neurosurg 2010; 25:38-44. [DOI: 10.3109/02688697.2010.534200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Nucleus accumbens deep brain stimulation did not prevent suicide attempt in tourette syndrome. Biol Psychiatry 2010; 68:e19-20. [PMID: 20385371 DOI: 10.1016/j.biopsych.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
|