1
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Fang Y, Shen P, Xu L, Shi Y, Wang L, Yang M. PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation. Brain Inj 2024; 38:918-927. [PMID: 38828532 DOI: 10.1080/02699052.2024.2361623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cognitive impairment is a severe complication of acute respiratory distress syndrome (ARDS). Emerging studies have revealed the effects of pyrrolidine dithiocarbamate (PDTC) on improving surgery-induced cognitive impairment. The major aim of the study was to investigate whether PDTC protected against ARDS-induced cognitive dysfunction and to identify the underlying mechanisms involved. METHODS The rat model of ARDS was established by intratracheal instillation of lipopolysaccharide (LPS), followed by treatment with PDTC. The cognitive function of rats was analyzed by the Morris Water Maze, and pro-inflammatory cytokines were assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blot assays. A dual-luciferase reporter gene assay was performed to identify the relationship between miR-181c and its target gene, TAK1 binding protein 2 (TAB2). RESULTS The results showed that PDTC improved cognitive impairment and alleviated neuroinflammation in the hippocampus in LPS-induced ARDS model. Furthermore, we demonstrated that miR-181c expression was downregulated in the hippocampus of the ARDS rats, which was restored by PDTC treatment. In vitro studies showed that miR-181c alleviated LPS-induced pro-inflammatory response by inhibiting TAB2, a critical molecule in the nuclear factor (NF)-κB signaling pathway. CONCLUSION PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation, providing a potential opportunity for the treatment of this disease.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunchao Shi
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liyan Wang
- Department of General Practice, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Maoxian Yang
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Qiang W, Deng WJ, Song SL, Pan LH. Identification and analysis correlation between hub genes and immune cell infiltration related to LPS-induced cognitive impairment. Heliyon 2024; 10:e37101. [PMID: 39286150 PMCID: PMC11403500 DOI: 10.1016/j.heliyon.2024.e37101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background The occurrence of immunity and inflammation outside the central nervous system frequently results in acute cognitive impairment among elderly patients. However, there is currently a lack of standardized methods for diagnosing acute cognitive impairment. The objective of our study was to identify potential mRNA biomarkers and investigate the pathogenesis of acute cognitive impairment in mice brains. Methods To analyze changes in hub genes associated with acute cognitive impairment, bioinformatics analysis was performed on the mouse brain injury data of sterile saline control group and lipopolysaccharide (LPS) induced experimental group in Gene Expression Omnibus (GEO). Functional analysis was conducted using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), which facilitated to identify some potential mRNA biomarkers for hub gene expression in mice brains. Additionally, the "CIBERSORT X″ R kit was employed to examine immune cell infiltrations of mice brains in LPS group and saline group. Results In the LPS and saline group, 102 significantly upregulated differentially expressed genes (DEGs) and 32 downregulated DEGs were identified. The pathway enrichment analysis using GO and KEGG revealed that these DEGs were mainly related to the regulation of cytokine, cytokine-cytokine receptor interaction, as well as protein interaction with cytokine and cytokine receptor. Immune cell infiltration analysis indicated potential involvement of M1 macrophages, NK cells resting, T cells CD4 memory, and T cells CD8 naive in the process of cognitive impairment. By constructing a protein-protein interaction (PPI) network, five hub genes (Cxcl10, Cxcl12, Cxcr3, Gbp2, and Ifih1) showed significant associations with immune cell types by using a threshold Spearman's rank correlation coefficient of R > 0.50 and p < 0.05. Conclusion The mRNA expression profile of the mice brain tissues in the LPS group differed from that in the normal saline group. These significantly expressed mRNAs may act an importance in the pathogenesis of acute cognitive impairment through mechanisms involving immunity and neuroinflammation.
Collapse
Affiliation(s)
- Wang Qiang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Wen Juan Deng
- Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Shu Ling Song
- Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi, China
- The Fourth People's Hospital of Nanning, Guangxi, China
| | - Ling Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi, China
| |
Collapse
|
4
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2024:10.1007/s11010-024-05091-0. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
5
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Zhang YM, Wei RM, Zhang JY, Liu S, Zhang KX, Kong XY, Ge YJ, Li XY, Chen GH. Resveratrol prevents cognitive deficits induced by sleep deprivation via modulating sirtuin 1 associated pathways in the hippocampus. J Biochem Mol Toxicol 2024; 38:e23698. [PMID: 38501767 DOI: 10.1002/jbt.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1β, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Shuang Liu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, Anhui, PR China
| |
Collapse
|
7
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Qiao Y, Li H, Li Y, Su E, Wang Z, Che L, Du Y. Study on the Mechanism of Eerdun Wurile's Effects on Post-operative Cognitive Dysfunction by the TLR4/NF-κB Pathway. Mol Neurobiol 2023; 60:7274-7284. [PMID: 37548853 PMCID: PMC10657789 DOI: 10.1007/s12035-023-03537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
The object of our work was to observe whether the Mongolian medicine Eerdun Wurile (EW) improve postoperative cognitive dysfunction (POCD) by affecting the TLR4/NF-κB. Mice (6-8-week-old male C57BL/6 J) were selected to establish an animal model of POCD by combining intracerebroventricular injection of lipopolysaccharide and nephrectomy; EW formulation and EW basic formulation were administered intra-gastrically for 7 consecutive days. The cognitive performance was assessed by Morris water maze test. H&E staining was examined to detect alterations in hippocampal tissue. Immunohistochemical staining was performed to evaluate MyD88, NF-κB, TLR4, iNOS, and IBA-1 expressions; Western blotting and RT-qPCR were performed to evaluate MyD88, NF-κB, and TLR4. The expressions of IL-6, IL-1β, and TNF-α were evaluated by ELISA. Intracerebroventricular injection of lipopolysaccharide combined with nephrectomy induced cognitive dysfunction in mice, stimulated TLR4/NF-κB and microglia, and promoted the secretion of murine TNF-α, IL-1β, and IL-6. EW formulation and EW basic formulation treatment are able to suppress the TLR4/NF-κB pathway activation and microglia, and the serum cytokine secretions related to proinflammation, and restore the cognitive performance. EW formulation and EW basic formulation can improve POCD in mice, and TLR4/NF-κB pathway seems to be one of the important mechanisms in EW's improvement of POCD.
Collapse
Affiliation(s)
- Yun Qiao
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Huiru Li
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Yan Li
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Enboer Su
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Zhe Wang
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Limuge Che
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
- Jinshan Economic Development Zone, Tumote Left Banner, Inner Mongolia Autonomous Region Jinshan Campus of Inner Mongolia Medical University, Hohhot City, China.
| | - Yiri Du
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010059, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
9
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
10
|
Zhuang Y, Xu J, Zheng K, Zhang H. Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass. IBRAIN 2023; 10:290-304. [PMID: 39346790 PMCID: PMC11427806 DOI: 10.1002/ibra.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 10/01/2024]
Abstract
Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.
Collapse
Affiliation(s)
- Yi‐Ming Zhuang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ji‐Yang Xu
- Department of AnesthesiologyJudicial Police Hospital of Guizhou ProvinceGuiyangChina
| | - Kun Zheng
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Hong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
11
|
Wang L, Peng G, Chen L, Guo M, Wang B, Zhang Y, Zhou J, Zhong M, Ye J. Icariin reduces cognitive dysfunction induced by surgical trauma in aged rats by inhibiting hippocampal neuroinflammation. Front Behav Neurosci 2023; 17:1162009. [PMID: 37351155 PMCID: PMC10282654 DOI: 10.3389/fnbeh.2023.1162009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postsurgical complication in elderly individuals, significantly impacting the quality of life of patients; however, there is currently no effective clinical treatment for POCD. Recent studies have shown that Icariin (ICA) has antiaging effects and improves cognitive function, but its effect in POCD has not been studied. In this study, we investigated the influence of ICA on cognitive function and the TLR4/NF-κB signaling pathway in a POCD rat model. We found that ICA reduced surgery-induced memory impairment, decreased hippocampal inflammatory responses, ameliorated neuronal injury in the hippocampus and inhibited microglial activation. In addition, we also observed that ICA inhibited activation of the TLR4/NF-κB signaling pathway. In summary, our research suggest that ICA can ameliorate surgery-induced memory impairment and that the improvements resulting from administration of ICA may be associated with inhibition of hippocampal neuroinflammation. Our research findings also provide insight into potential therapeutic targets and methods for POCD.
Collapse
|
12
|
Keizer HG, Brands R, Seinen W. An AMP Kinase-pathway dependent integrated stress response regulates ageing and longevity. Biogerontology 2023:10.1007/s10522-023-10024-3. [PMID: 36877293 DOI: 10.1007/s10522-023-10024-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
The purpose of this article is to investigate the role of the AMP-kinase pathway (AMPK pathway) in the induction of a concomitant set of health benefits by exercise, numerous drugs, and health ingredients, all of which are adversely affected by ageing. Despite the AMPK pathway being frequently mentioned in relation to both these health effects and ageing, it appears challenging to understand how the activation of a single biochemical pathway by various treatments can produce such a diverse range of concurrent health benefits, involving so many organs. We discovered that the AMPK pathway functions as an integrated stress response system because of the presence of a feedback loop in it. This evolutionary conserved stress response system detects changes in AMP/ATP and NAD/NADH ratios, as well as the presence of potential toxins, and responds by activating a common protective transcriptional response that protects against aging and promotes longevity. The inactivation of the AMPK pathway with age most likely explains why ageing has a negative impact on the above-mentioned set of health benefits. We conclude that the presence of a feedback loop in the AMP-kinase pathway positions this pathway as an AMPK-ISR (AMP Kinase-dependent integrated stress response) system that responds to almost any type of (moderate) environmental stress by inducing various age-related health benefits and longevity.
Collapse
Affiliation(s)
- H G Keizer
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - W Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
13
|
Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF- κB Pathway and Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2919811. [PMID: 36865741 PMCID: PMC9974290 DOI: 10.1155/2023/2919811] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 02/25/2023]
Abstract
Objective Naringin is a flavonoid derived from Chinese herbs. According to earlier studies, naringin may have the potential to alleviate aging-induced cognitive dysfunction. Therefore, this study attempted to explore the protective effect and underlying mechanism of naringin on aging rats with cognitive dysfunction. Methods After the construction of a model of aging rats with cognitive dysfunction through subcutaneous injection of D-galactose (D-gal; 150 mg/kg), intragastric administration of naringin (100 mg/kg) was performed for treatment. Behavioral tests, including Morris water maze test (MWM), novel object recognition test (NORT), and fear conditioning test, were used to measure the cognitive function; ELISA and biochemical tests were used to determine the levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the hippocampus of rats in each group, respectively; H&E staining was used to observe the pathological changes in the hippocampus; Western blot was used to examine the expression of toll-like receptor 4 (TLR4)/NF-κB pathway-related proteins and endoplasmic reticulum (ER) stress-related proteins in the hippocampus. Results The model was successfully constructed by subcutaneous injection of D-gal (150 mg/kg). The behavioral test results showed that naringin could ameliorate the cognitive dysfunction and alleviate the histopathological damage of hippocampus. Moreover, naringin significantly improve the inflammatory response (the levels of IL-1β, IL-6, and MCP-1 were decreased), oxidative stress response (MDA level was increased while GSH-Px activity was decreased), and ER stress (the expression of glucose-regulated protein 78 (GRP78), C/-EBP homologous protein (CHOP), and transcription factor 6 (ATF6) expression was downregulated), and increased the levels of neurotrophic factors BDNF and NGF in D-gal rats. Besides, further mechanistic studies revealed the downregulation of naringin on TLR4/NF-κB pathway activity. Conclusion Naringin may inhibit inflammatory response, oxidative stress, and ER stress by downregulating TLR4/NF-κB pathway activity, thereby improving cognitive dysfunction and alleviating histopathological damage of hippocampus in aging rats. Briefly, naringin is an effective drug for the treatment of cognitive dysfunction.
Collapse
|
14
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
15
|
Research Progress on Exosomes and MicroRNAs in the Microenvironment of Postoperative Neurocognitive Disorders. Neurochem Res 2022; 47:3583-3597. [DOI: 10.1007/s11064-022-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
|
16
|
Sun Y, Wang Y, Ye F, Cui V, Lin D, Shi H, Zhang Y, Wu A, Wei C. SIRT1 activation attenuates microglia-mediated synaptic engulfment in postoperative cognitive dysfunction. Front Aging Neurosci 2022; 14:943842. [PMID: 36437988 PMCID: PMC9685341 DOI: 10.3389/fnagi.2022.943842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/14/2022] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a debilitating neurological complication in surgical patients. Current research has focused mainly on microglial activation, but less is known about the resultant neuronal synaptic changes. Recent studies have suggested that Sirtuin-1 (SIRT1) plays a critical role in several different neurological disorders via its involvement in microglial activation. In this study, we evaluate the effects of SIRT1 activation in a POCD mouse model. MATERIALS AND METHODS Exploratory laparotomy was performed in mice aged 12-14 months under sevoflurane anesthesia to establish our animal POCD model. Transcriptional changes in the hippocampus after anesthesia and surgery were evaluated by RNA sequencing. SIRT1 expression was verified by Western Blot. Mice were treated with SIRT1 agonist SRT1720 or vehicle after surgery. Changes in microglia morphology, microglial phagocytosis, presence of dystrophic neurites, and dendritic spine density were evaluated. Cognitive performance was evaluated using the Y maze and Morris water maze (MWM). RESULTS Sirtuin-1 expression levels were downregulated in POCD. Exposure to anesthesia and surgery lead to alteration in microglia morphology, increased synaptic engulfment, dendritic spine loss, and cognitive deficits. These effects were alleviated by SRT1720 administration. CONCLUSION This study suggests an important neuroprotective role for SIRT1 in POCD pathogenesis. Increasing SIRT1 function represents a promising therapeutic strategy for prevention and treatment of POCD.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuzhu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Victoria Cui
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
He L, Zhang F, Zhu Y, Lu M. A crosstalk between circular RNA, microRNA, and messenger RNA in the development of various brain cognitive disorders. Front Mol Neurosci 2022; 15:960657. [PMID: 36329693 PMCID: PMC9622787 DOI: 10.3389/fnmol.2022.960657] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), stroke, and postoperative neurocognitive disorder (POND) are commonly faced with neurocognitive disorders with limited therapeutic options. Some non-coding ribonucleic acids (ncRNAs) are involved in the development of various brain cognitive disorders. Circular RNAs (circRNAs), a typical group of ncRNAs, can function as competitive endogenous RNAs (ceRNAs) to dysregulate shared microRNAs (miRNAs) at post-transcription level, inhibiting regulation of miRNAs on their targeted messenger RNAs (mRNAs). circRNAs are abundant in central nervous system (CNS) diseases and cause brain disorders, but the exact roles of circRNAs are unclear. The crosstalk between circRNA, miRNA, and mRNA plays an important role in the pathogenesis of these neurocognitive dysfunction diseases and abnormal conditions including AD, PD, stroke, TBI, and POND. In this review, we summarized the participation of circRNA in neuroglial damage and inflammation. Finally, we aimed to highlight the regulatory mechanisms of circRNA–miRNA–mRNA networks in the development of various brain cognitive disorders and provide new insights into the therapeutics of these diseases.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
- *Correspondence: Liang He
| | - Furong Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Yuling Zhu
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Meilin Lu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Meilin Lu
| |
Collapse
|
18
|
Ma Y, Ji Y, Xu L, Li Z, Ge S. Obesity aggravated hippocampal-dependent cognitive impairment after sleeve gastrectomy in C57/BL6J mice via SIRT1/CREB/BDNF pathway. Exp Brain Res 2022; 240:2897-2906. [PMID: 36114835 DOI: 10.1007/s00221-022-06465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments following anesthesia/surgery, but the role of obesity and the underlying mechanisms are not known. We investigated the impact of obesity on POCD. Eighty male C57BL/6 J mice were assigned randomly to two groups fed a normal chow diet (ND, n = 40) or a high-fat diet (HD, n = 40) for 20 weeks. Then, they were divided randomly into eight subgroups of 10: ND control (NDC), ND with surgery (NDS), HD control (HDC), HD with surgery (HDS); NDS + DMSO (NDS + DS), NDS + SRT1720 (NDS + SRT), HDS + DMSO (HDS + DS), and HDS + SRT1720 (HDS + SRT). Body weight, blood glucose level, and serum lipid levels were measured. Staining methods on liver tissues were used to determine hepatic steatosis. A POCD model was established by sleeve gastrectomy (SG) under isoflurane anesthesia. Cognitive function was assessed using the Morris water maze test (MWMT). Expression of sirtuin1 (SIRT1), phosphorylated cAMP-responsive element binding protein (p-CREB), CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. High-fat diet-fed mice for 20 weeks could establish an obesity model with hyperlipidemia and hepatic steatosis. Cognitive impairment was significantly worse in the HDC and HDS groups than that in the NDC and NDS groups, respectively. Hippocampal expression of SIRT1, p-CREB, and BDNF in the HDS group was significantly lower than that of the HDC group. SRT1720 (SIRT1 activator) pretreatment could attenuate cognitive impairment by upregulating SIRT1 expression. These data suggest that obesity exacerbated postoperative hippocampal-dependent cognitive impairment via a SIRT1 pathway, and SRT1720 pretreatment could alleviate it.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zheng Li
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Liu P, Zhao S, Qiao H, Li T, Mi W, Xu Z, Xue X. Does propofol definitely improve postoperative cognitive dysfunction?-a review of propofol-related cognitive impairment. Acta Biochim Biophys Sin (Shanghai) 2022; 54:875-881. [PMID: 35713318 PMCID: PMC9828335 DOI: 10.3724/abbs.2022067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common brain function-related complication after surgery. In addition to old age being an independent risk factor, anesthetics are also important predisposing factors. Among them, propofol is the most commonly used intravenous anesthetic in clinical practice. It has a rapid onset, short half-life, and high recovery quality. Many studies report that propofol can attenuate surgery-induced cognitive impairment, however, some other studies reveal that propofol also induces cognitive dysfunction. Therefore, this review summarizes the effects of propofol on the cognition, and discusses possible related mechanisms, which aims to provide some evidence for the follow-up studies.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China
| | - Sheng Zhao
- Department of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100037China
| | - Hui Qiao
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Tianzuo Li
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Weidong Mi
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Zhipeng Xu
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| |
Collapse
|
20
|
Zhao W, Song S, Chu W, Li Y, Chen S, Ji Y, Chen Q, Jin X, Ji F. Disruption of hippocampal P2RX2/CaMKII/NF-κB signaling contributes to learning and memory impairment in C57BL/6 mice induced by surgery plus anesthesia in neonatal period. Biomed Pharmacother 2022; 149:112897. [PMID: 35378503 DOI: 10.1016/j.biopha.2022.112897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
A great number of pediatric patients undergoing varied procedures make neonatal surgery plus anesthesia become a matter of great concern owing to underlying neurotoxicity in developing brain. The authors set out to assess long-term effects of surgery plus anesthesia in mouse model. Six-day-old C57BL/6 mice were randomized to receive either anesthesia with 3% sevoflurane, abdominal surgery under the same anesthesia, or the control condition. These mice were examined of learning and memory at juvenile age in Morris water maze test. The brain tissues of mice were harvested for Western blot analysis, including purinergic receptors P2X family, CaMKII and NF-κB. Another battery of mice were administered with inhibitors of P2RX2/3 (e.g., A317491) into hippocampal dentate gyrus before behavioral testing. We found that neonatal surgery plus anesthesia, but not sevoflurane anesthesia alone, impaired the learning and memory of juvenile mice, as evidenced by delayed escape latency and reduced platform-crossing times. Immunoblotting analysis showed that behavioral abnormalities were associated with increased levels of P2RX2, phosphorylated-CaMKIIβ and activated NF-κB in mouse hippocampus. Injection of A317491 ameliorated the impaired learning and memory of juvenile mice undergoing neonatal surgery plus anesthesia, and it also mitigated the neonatal surgery-induced signaling enhancement of P2RX2/CaMKII/NF-κB. Together, these results indicate that neonatal surgery plus anesthesia may cause long-term cognitive dysfunction, with potential mechanism of increasing P2RX2 and downstream signaling of phosphorylated-CaMKII and NF-κB. Our findings will promote more studies to assess detrimental effects of surgery and accompanying inflammation, diverse anesthetics and even sleeping deprivation on mouse neurodevelopment and neurobehavioral performance.
Collapse
Affiliation(s)
- Weiming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China
| | - Shaoyong Song
- Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China; Department of Pain Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215124, PR China
| | - Wei Chu
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Yixuan Li
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Shiwen Chen
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Yumeng Ji
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Qingcai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China
| | - Xin Jin
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China.
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
21
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
22
|
Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci 2021; 33:427-438. [PMID: 34757706 DOI: 10.1515/revneuro-2021-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
23
|
Bhushan S, Li Y, Huang X, Cheng H, Gao K, Xiao Z. Progress of research in postoperative cognitive dysfunction in cardiac surgery patients: A review article. Int J Surg 2021; 95:106163. [PMID: 34743049 DOI: 10.1016/j.ijsu.2021.106163] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication of central nervous system in middle-aged and elderly patients after cardiac surgery. The purpose of this study was to review the progress in diagnosis, pathogenesis and risk factors and control strategy of POCD. METHODS A systematic literature search was conducted using Pubmed and EMBASE, using the Mesh terms and key words "POCD", "diagnostic criteria", "pathogenesis", "influencing factors" and "prevention strategies". Studies were retained for review after meeting strict inclusion criteria that included only prospective studies evaluating risk factors for POCD in patients who had elective cardiac surgery. Diagnosis of POCD needed to be confirmed using the Diagnostic and Statistical Manual of Montreal Cognitive Assessment (MoCA) Scale and other criteria. RESULTS "Twenty two articles were selected for inclusion. The incidence of POCD across the studies ranged from 9% to 54%. Multiple factors have been associated with the pathogenesis and increased risk of POCD, including neuroinflammation, dysfunction of cholinergic system, abnormal protein function (β-amyloid), old age, anesthetic, surgical and other factors." CONCLUSIONS POCD is a common complication after cardiac surgery in elderly. The highest POCD incidence was observed after open aortic, TAVI and CABG surgery. Age, cognitive function, depression, CPB and anesthetic use are leading risk factors. Further research is needed in determining interventions that will be effective in preventing and treating POCD in cardiac surgical setting.
Collapse
Affiliation(s)
- Sandeep Bhushan
- Department of Cardiothoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China Department of Anesthesiology, West China Hospital of Medicine, Sichuan University, Sichuan, 610017, China
| | | | | | | | | | | |
Collapse
|
24
|
Bhushan S, Li Y, Huang X, Cheng H, Gao K, Xiao Z. Progress of research in postoperative cognitive dysfunction in cardiac surgery patients: A review article. Int J Surg 2021. [DOI: https://doi.org/10.1016/j.ijsu.2021.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Shen M, Lian N, Song C, Qin C, Yu Y, Yu Y. Different Anesthetic Drugs Mediate Changes in Neuroplasticity During Cognitive Impairment in Sleep-Deprived Rats via Different Factors. Med Sci Monit 2021; 27:e932422. [PMID: 34564688 PMCID: PMC8482804 DOI: 10.12659/msm.932422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Perioperative neuro-cognitive disorders (PND) are preoperative and postoperative complications of multiple nervous systems, typically manifested as decreased memory and learning ability after surgery. It was used to replace the original definition of postoperative cognitive dysfunctions (POCD) from 2018. Our previous studies have shown that sevoflurane inhalation can lead to cognitive dysfunction in Sprague-Dawley rats, but the specific mechanism is still unclear. Material/Methods Thirty-six male Sprague-Dawley rats were randomly divided into 6 groups (n=6): the SD group was given 24-h acute sleep deprivation; Sevoflurane was inhaled for 2 h in the Sevo group. Two mL propofol was injected into the tail vein of rats in the Prop group. The rats in the SD+Sevo group and SD+Prop group were deprived of sleep before intervention in the same way as before. Results We noted significant behavioral changes in rats treated with SIK3 inhibitors or tau phosphorylation agonists before propofol injection or sevoflurane inhalation, with associated protein levels and dendritic spine density documented. Sevoflurane anesthesia-induced cognitive impairment following acute sleep deprivation was more pronounced than sleep deprivation-induced cognitive impairment alone and resulted in increased brain SIK3 levels, increased phosphorylation of total tau and tau, and decreased acetylation modifications. After using propofol, the cognitive function returned to baseline levels with a series of reversals of cognitive dysfunction. Conclusions These results suggest that sevoflurane inhalation via the SIK3 pathway aggravates cognitive impairment after acute sleep deprivation and that propofol anesthesia reverses the effects of sleep deprivation by affecting modifications of tau protein.
Collapse
Affiliation(s)
- Mengxi Shen
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chengcheng Song
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chao Qin
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| |
Collapse
|
26
|
Wei W, Sun Z, He S, Zhang W, Chen S. Protective role of dexmedetomidine against sevoflurane-induced postoperative cognitive dysfunction via the microRNA-129/TLR4 axis. J Clin Neurosci 2021; 92:89-97. [PMID: 34509269 DOI: 10.1016/j.jocn.2021.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
The involvement of Dexmedetomidine (Dex) has been indicated in postoperative cognitive dysfunction (POCD), while the mechanism is not well characterized. This study estimated the mechanism of Dex in POCD. Rats were anesthetized with sevoflurane (SEV) to evoke POCD and then subjected to Morris water maze test to detect the cognitive and behavioral function. Then, the damage of hippocampus and cortex, and apoptosis and activity of neurons were examined. Microarray analysis was performed to screen out the differentially expressed microRNAs (miRs) in rats after Dex treatment. The cognitive and behavioral functions and neuronal activity of rats were detected after miR-129 antagomir injection. The target of miR-129 was predicted. The levels of TLR4 and NF-κB p65 in hippocampus and cortex were measured. Dex treatment alleviated SEV-induced behavior and cognitive impairments in rats, promoted neuronal activity and hindered neuronal apoptosis. After treatment with Dex, miR-129 expression was elevated in brain tissues, and the neuroprotection of Dex on POCD rats was partially annulled after injection of miR-129 antagomir. Furthermore, miR-129 targeted TLR4 and prevented the phosphorylation of NF-κB p65. In summary, Dex ameliorated SEV-induced POCD by elevating miR-129 and inhibiting TLR4 and NF-κB p65 phosphorylation. This study may shed new lights on POCD treatment.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| |
Collapse
|
27
|
He J, Chen Z, Kang X, Wu L, Jiang JM, Liu SM, Wei HJ, Chen YJ, Zou W, Wang CY, Zhang P. SIRT1 Mediates H 2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 2021; 46:611-623. [PMID: 33534060 DOI: 10.1007/s11064-020-03196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.
Collapse
Affiliation(s)
- Juan He
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhuo Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, Yiyang Center Hospital, Yiyang, 413000, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jia-Mei Jiang
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yong-Jun Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
28
|
Liu Q, Sun YM, Huang H, Chen C, Wan J, Ma LH, Sun YY, Miao HH, Wu YQ. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J Neuroinflammation 2021; 18:41. [PMID: 33541361 PMCID: PMC7863360 DOI: 10.1186/s12974-021-02089-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. METHODS SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. RESULTS Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. CONCLUSION The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Collapse
Affiliation(s)
- Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China.
| |
Collapse
|
29
|
Wang X, Hua D, Tang X, Li S, Sun R, Xie Z, Zhou Z, Zhao Y, Wang J, Li S, Luo A. The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nat Sci Sleep 2021; 13:1395-1410. [PMID: 34393534 PMCID: PMC8354730 DOI: 10.2147/nss.s320745] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| |
Collapse
|
30
|
Jiang W, Xu S, Guo H, Lu L, Liu J, Wang G, Hao K. Magnesium isoglycyrrhizinate prevents the nonalcoholic hepatic steatosis via regulating energy homeostasis. J Cell Mol Med 2020; 24:7201-7213. [PMID: 32410294 PMCID: PMC7339216 DOI: 10.1111/jcmm.15230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease is a public health problem worldwide associated with high morbidity and hepatic steatosis, but no effective therapeutic interventions. Magnesium isoglycyrrhizinate (MGIG), a derivative of an active component of Glycyrrhiza glabra, is widely used for the treatment of inflammatory liver diseases due to its potent anti-inflammatory and hepatoprotective activities. Hence, this study aimed to study the effects of MGIG on hepatic steatosis in mice fed a high-fat diet (HFD). Oil Red O staining and transmission electron microscopy revealed a decrease in lipid accumulation in the liver after MGIG treatment along with improved mitochondrial ultramicrostructures. Metabonomic analysis demonstrated that MGIG intervention increased glutamate utilization in mitochondria by promoting the uptake of glutamate into the tricarboxylic acid (TCA) cycle. The NAD+ /NADH ratio and the expression of other lipid-metabolism-related genes were increased in MGIG-treated livers. Transcriptome sequencing showed that the expression of TLR4, an isoform of the innate immunity Toll-like receptors (TLRs), was significantly decreased after MGIG treatment, suggesting a link between the anti-inflammatory effects of MGIG and its suppression of lipidation. Our results reveal the potent effects of MGIG on lipid metabolism and suggest that hepatic TLR4 might be a crucial therapeutic target to regulate energy homeostasis in hepatic steatosis.
Collapse
Affiliation(s)
- Wenjiao Jiang
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Shiyu Xu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Huijie Guo
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Li Lu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Liu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Kun Hao
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|