1
|
Stanley A, Valentine S, Narr CF. Divvying up the pie: Tissue nutrient content is related to its parasite load. Ecol Evol 2024; 14:e11122. [PMID: 38774141 PMCID: PMC11106516 DOI: 10.1002/ece3.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 05/24/2024] Open
Abstract
The nutrient content of host resources can influence the abundance of parasites within an ecosystem, but linking specific nutrients in a host to the abundance of different parasite taxa remains a challenge. Here, we work to forge this link by quantifying the relationship between the nutrient content of specific infection sites and the abundance of multiple parasite taxa within the digestive tract of largemouth bass (Micropterus salmoides) collected from the Mississippi River. To generate a mechanistic understanding of these relationships, we tested four basic predictions: (1) the nutrient content of different host tissues (infection sites) varies within and across hosts, (2) the nutrient content of parasite genera differs from that of their host tissue(s), (3) the nutrient content of parasite genera differ from one another and (4) the nutrient content of host tissues is related to the nutrient content and abundance of parasite genera. We found support for each of these predictions. We found stoichiometric differences between the digestive tissues we examined. We also found that across hosts, intestine and pyloric caeca C:N ratios increased and %N decreased with fish condition factor. Both of the actively feeding parasitic genera we measured had lower C:N ratios compared to both their host tissue and other encysted/non-reproductive genera, suggesting the potential for N limitation of these parasites in the intestines or pyloric caeca of hosts. Consistent with this possibility, we found that the total number of actively feeding parasitic worms in the pyloric caeca increased with that tissue's N:P ratio (but was not related to host condition factor). Our results suggest that parasites encounter significant variation in nutrient content within and across hosts and that this variation may influence the abundance of actively feeding parasites. This work highlights the need for additional empirical comparisons of parasite stoichiometry across tissues and individual hosts.
Collapse
Affiliation(s)
- Adrienne Stanley
- School of Biological SciencesSouthern Illinois UniversityCarbondaleILUSA
| | - Shaley Valentine
- Illinois River Biological StationIllinois Natural History SurveyHavanaILUSA
| | - Charlotte F. Narr
- School of Biological SciencesSouthern Illinois UniversityCarbondaleILUSA
| |
Collapse
|
2
|
Van de Waal DB, White LA, Everett R, Asik L, Borer ET, Frenken T, González AL, Paseka R, Seabloom EW, Strauss AT, Peace A. Reconciling contrasting effects of nitrogen on host immunity and pathogen transmission using stoichiometric models. Ecology 2023; 104:e4170. [PMID: 37755721 DOI: 10.1002/ecy.4170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 09/28/2023]
Abstract
Hosts rely on the availability of nutrients for growth, and for defense against pathogens. At the same time, changes in host nutrition can alter the dynamics of pathogens that rely on their host for reproduction. For primary producer hosts, enhanced nutrient loads may increase host biomass or pathogen reproduction, promoting faster density-dependent pathogen transmission. However, the effect of elevated nutrients may be reduced if hosts allocate a growth-limiting nutrient to pathogen defense. In canonical disease models, transmission is not a function of nutrient availability. Yet, including nutrient availability is necessary to mechanistically understand the response of infection to changes in the environment. Here, we explore the implications of nutrient-mediated pathogen infectivity and host immunity on infection outcomes. We developed a stoichiometric disease model that explicitly integrates the contrasting dependencies of pathogen infectivity and host immunity on nitrogen (N) and parameterized it for an algal-host system. Our findings reveal dynamic shifts in host biomass build-up, pathogen prevalence, and the force of infection along N supply gradients with N-mediated host infectivity and immunity, compared with a model in which the transmission rate was fixed. We show contrasting responses in pathogen performance with increasing N supply between N-mediated infectivity and N-mediated immunity, revealing an optimum for pathogen transmission at intermediate N supply. This was caused by N limitation of the pathogen at a low N supply and by pathogen suppression via enhanced host immunity at a high N supply. By integrating both nutrient-mediated pathogen infectivity and host immunity into a stoichiometric model, we provide a theoretical framework that is a first step in reconciling the contrasting role nutrients can have on host-pathogen dynamics.
Collapse
Affiliation(s)
- Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lauren A White
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, Maryland, USA
| | - Rebecca Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, Pennsylvania, USA
| | - Lale Asik
- Department of Mathematics and Statistics, University of the Incarnate Word, San Antonio, Texas, USA
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario, Canada
| | - Angélica L González
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Rachel Paseka
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Alexander T Strauss
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- River Basin Center, University of Georgia, Athens, Georgia, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Hite JL, Roos AMD. Pathogens stabilize or destabilize depending on host stage structure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20378-20404. [PMID: 38124557 DOI: 10.3934/mbe.2023901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A common assumption is that pathogens more readily destabilize their host populations, leading to an elevated risk of driving both the host and pathogen to extinction. This logic underlies many strategies in conservation biology and pest and disease management. Yet, the interplay between pathogens and population stability likely varies across contexts, depending on the environment and traits of both the hosts and pathogens. This context-dependence may be particularly important in natural consumer-host populations where size- and stage-structured competition for resources strongly modulates population stability. Few studies, however, have examined how the interplay between size and stage structure and infectious disease shapes the stability of host populations. Here, we extend previously developed size-dependent theory for consumer-resource interactions to examine how pathogens influence the stability of host populations across a range of contexts. Specifically, we integrate a size- and stage-structured consumer-resource model and a standard epidemiological model of a directly transmitted pathogen. The model reveals surprisingly rich dynamics, including sustained oscillations, multiple steady states, biomass overcompensation, and hydra effects. Moreover, these results highlight how the stage structure and density of host populations interact to either enhance or constrain disease outbreaks. Our results suggest that accounting for these cross-scale and bidirectional feedbacks can provide key insight into the structuring role of pathogens in natural ecosystems while also improving our ability to understand how interventions targeting one may impact the other.
Collapse
Affiliation(s)
- Jessica L Hite
- University of Wisconsin-Madison, Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - André M de Roos
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
4
|
Borer ET, Kendig AE, Holt RD. Feeding the fever: Complex host-pathogen dynamics along continuous resource gradients. Ecol Evol 2023; 13:e10315. [PMID: 37502304 PMCID: PMC10368943 DOI: 10.1002/ece3.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host-pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within- and among-host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.
Collapse
Affiliation(s)
- Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Amy E. Kendig
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Minnesota Department of Natural ResourcesMinnesota Biological SurveySaint PaulMinnesotaUSA
| | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
6
|
Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat Ecol Evol 2021; 5:431-441. [PMID: 33526890 DOI: 10.1038/s41559-020-01385-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Tackling antibiotic resistance necessitates deep understanding of how resource competition within and between species modulates the fitness of resistant microbes. Recent advances in ecological coexistence theory offer a powerful framework to probe the mechanisms regulating intra- and interspecific competition, but the significance of this body of theory to the problem of antibiotic resistance has been largely overlooked. In this Perspective, we draw on emerging ecological theory to illustrate how changes in resource niche overlap can be equally important as changes in competitive ability for understanding costs of resistance and the persistence of resistant pathogens in microbial communities. We then show how different temporal patterns of resource and antibiotic supply, alongside trade-offs in competitive ability at high and low resource concentrations, can have diametrically opposing consequences for the coexistence and exclusion of resistant and susceptible strains. These insights highlight numerous opportunities for innovative experimental and theoretical research into the ecological dimensions of antibiotic resistance.
Collapse
|
7
|
Barfield M, Martcheva M, Tuncer N, Holt RD. Backward bifurcation and oscillations in a nested immuno-eco-epidemiological model. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 12:51-88. [PMID: 29166833 DOI: 10.1080/17513758.2017.1401676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
This paper introduces a novel partial differential equation immuno-eco-epidemiological model of competition in which one species is affected by a disease while another can compete with it directly and by lowering the first species' immune response to the infection, a mode of competition termed stress-induced competition. When the disease is chronic, and the within-host dynamics are rapid, we reduce the partial differential equation model (PDE) to a three-dimensional ordinary differential equation (ODE) model. The ODE model exhibits backward bifurcation and sustained oscillations caused by the stress-induced competition. Furthermore, the ODE model, although not a special case of the PDE model, is useful for detecting backward bifurcation and oscillations in the PDE model. Backward bifurcation related to stress-induced competition allows the second species to persist for values of its invasion number below one. Furthermore, stress-induced competition leads to destabilization of the coexistence equilibrium and sustained oscillations in the PDE model. We suggest that complex systems such as this one may be studied by appropriately designed simple ODE models.
Collapse
Affiliation(s)
- Michael Barfield
- a Department of Biology , University of Florida , Gainesville , FL , USA
| | - Maia Martcheva
- b Department of Mathematics , University of Florida , Gainesville , FL , USA
| | - Necibe Tuncer
- c Department of Mathematical Sciences , Florida Atlantic University , Boca Raton , FL , USA
| | - Robert D Holt
- a Department of Biology , University of Florida , Gainesville , FL , USA
| |
Collapse
|
8
|
Smith VH, Rubinstein RJ, Park S, Kelly L, Klepac-Ceraj V. Microbiology and ecology are vitally important to premedical curricula. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015. [PMID: 26198190 PMCID: PMC4536855 DOI: 10.1093/emph/eov014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the impact of the human microbiome on health, an appreciation of microbial ecology is yet to be translated into mainstream medical training and practice. The human microbiota plays a role in the development of the immune system, in the development and function of the brain, in digestion, and in host defense, and we anticipate that many more functions are yet to be discovered. We argue here that without formal exposure to microbiology and ecology—fields that explore the networks, interactions and dynamics between members of populations of microbes—vitally important links between the human microbiome and health will be overlooked. This educational shortfall has significant downstream effects on patient care and biomedical research, and we provide examples from current research highlighting the influence of the microbiome on human health. We conclude that formally incorporating microbiology and ecology into the premedical curricula is invaluable to the training of future health professionals and critical to the development of novel therapeutics and treatment practices.
Collapse
Affiliation(s)
- Val H Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Serry Park
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA,
| |
Collapse
|