1
|
Marcotegui N, Romero-Murillo S, Marco-Sanz J, Peris I, Berrozpe BS, Vicente C, Odero MD, Arriazu E. Set Protein Is Involved in FLT3 Membrane Trafficking. Cancers (Basel) 2023; 15:cancers15082233. [PMID: 37190162 DOI: 10.3390/cancers15082233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
The in-frame internal tandem duplication (ITD) of the FLT3 gene is an important negative prognostic factor in acute myeloid leukemia (AML). FLT3-ITD is constitutive active and partially retained in the endoplasmic reticulum (ER). Recent reports show that 3'UTRs function as scaffolds that can regulate the localization of plasma membrane proteins by recruiting the HuR-interacting protein SET to the site of translation. Therefore, we hypothesized that SET could mediate the FLT3 membrane location and that the FLT3-ITD mutation could somehow disrupt the model, impairing its membrane translocation. Immunofluorescence and immunoprecipitation assays demonstrated that SET and FLT3 co-localize and interact in FLT3-WT cells but hardly in FLT3-ITD. SET/FLT3 interaction occurs before FLT3 glycosylation. Furthermore, RNA immunoprecipitation in FLT3-WT cells confirmed that this interaction occurs through the binding of HuR to the 3'UTR of FLT3. HuR inhibition and SET nuclear retention reduced FLT3 in the membrane of FLT3-WT cells, indicating that both proteins are involved in FLT3 membrane trafficking. Interestingly, the FLT3 inhibitor midostaurin increases FLT3 in the membrane and SET/FLT3 binding. Therefore, our results show that SET is involved in the transport of FLT3-WT to the membrane; however, SET barely binds FLT3 in FLT3-ITD cells, contributing to its retention in the ER.
Collapse
Affiliation(s)
- Nerea Marcotegui
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Javier Marco-Sanz
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Irene Peris
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Blanca S Berrozpe
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - María D Odero
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Yang F, Tan Y, Wu C, Xin L, Huang Z, Zhou H, Zhou F. dSTORM-Based Single-Cell Protein Quantitative Analysis Can Effectively Evaluate the Degradation Ability of PROTACs. Chembiochem 2023; 24:e202200680. [PMID: 36564338 DOI: 10.1002/cbic.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
As an emerging therapeutic strategy, proteolysis-targeting chimeras (PROTACs) have been proven to be superior to traditional drugs in many aspects. However, due to their unique mechanism of action, existing methods for evaluating the degradation still have many limitations, which seriously restricts the development of PROTACs. In this methodological study, using direct stochastic optical reconstruction microscopy (dSTORM)-based single-cell protein quantitative analysis, we systematically investigated the dynamic degradation characteristics of FLT3 protein during PROTACs treatment. We found that the distribution of FLT3 varies between FLT3-ITD mutation and FLT3-WT cells. PROTACs had an obvious time-course effect on protein degradation and present two distinct phases; this provided a basis for deciding when to evaluate protein degradation. High concentrations of PROTACs were more effective than long-time administration because a higher Dmax was achieved. Two-color dSTORM-based colocalization analysis efficiently detected the proportion of ternary complexes, making it very useful in screening PROTACs. Taken together, our findings show that the dSTORM method is an ideal tool for evaluating PROTACs and will accelerate the development of new PROTACs.
Collapse
Affiliation(s)
- Fuwei Yang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Cheng Wu
- Key Laboratory of Biomedical Engineering of Hainan Province School, of Biomedical Engineering, Hainan University, Haikou, Hainan, 570100, P. R. China
| | - Lilan Xin
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Zhenli Huang
- Key Laboratory of Biomedical Engineering of Hainan Province School, of Biomedical Engineering, Hainan University, Haikou, Hainan, 570100, P. R. China
| | - Haibing Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| |
Collapse
|
3
|
Blöchl C, Wang D, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. Transcriptionally imprinted glycomic signatures of acute myeloid leukemia. Cell Biosci 2023; 13:31. [PMID: 36788594 PMCID: PMC9926860 DOI: 10.1186/s13578-023-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically and phenotypically heterogeneous disease that has been suffering from stagnant survival curves for decades. In the endeavor toward improved diagnosis and treatment, cellular glycosylation has emerged as an interesting focus area in AML. While mechanistic insights are still limited, aberrant glycosylation may affect intracellular signaling pathways of AML blasts, their interactions within the microenvironment, and even promote chemoresistance. Here, we performed a meta-omics study to portray the glycomic landscape of AML, thereby screening for potential subtypes and responsible glyco-regulatory networks. RESULTS Initially, by integrating comprehensive N-, O-, and glycosphingolipid (GSL)-glycomics of AML cell lines with transcriptomics from public databases, we were able to pinpoint specific glycosyltransferases (GSTs) and upstream transcription factors (TFs) associated with glycan phenotypes. Intriguingly, subtypes M5 and M6, as classified by the French-American-British (FAB) system, emerged with distinct glycomic features such as high (sialyl) Lewisx/a ((s)Lex/a) and high sialylation, respectively. Exploration of transcriptomics datasets of primary AML cells further substantiated and expanded our findings from cell lines as we observed similar gene expression patterns and regulatory networks that were identified to be involved in shaping AML glycan signatures. CONCLUSIONS Taken together, our data suggest transcriptionally imprinted glycomic signatures of AML, reflecting their differentiation status and FAB classification. This study expands our insights into the emerging field of AML glycosylation and paves the way for studies of FAB class-associated glycan repertoires of AML blasts and their functional implications.
Collapse
Affiliation(s)
- Constantin Blöchl
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Di Wang
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Guinevere S. M. Lageveen-Kammeijer
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
4
|
Zhang W, Sun X, Lei Y, Liu X, Zhang Y, Wang Y, Lin H. Roles of selenoprotein K in oxidative stress and endoplasmic reticulum stress under selenium deficiency in chicken liver. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109504. [PMID: 36375805 DOI: 10.1016/j.cbpc.2022.109504] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Selenoprotein K (SELENOK) is a major part of selenoprotein family. Selenoproteins have been proven playing vital roles in a variety of physiological processes. However, as a necessary supplement to the body of trace elements, how SELENOK regulates necroptosis in chicken liver has none clear claim. The purpose of this study was to cover the mechanism of SELENOK act in necroptosis of chicken liver. By feeding Se-deficiency diet for 1-day-old hyline chickens, we successfully built SELENOK-deficiency and discussed the regulation SELENOK have done. The test of liver function showed there has dysfunction appeared in the -Se groups. Results of TEM showed necroptosis occurred in the 35-Se group. After that western blot and qRT-PCR results prompted us SELENOK-deficiency caused large accumulation of ROS, enhanced endoplasmic reticulum stress, abnormally elevated HSPs family expression, and activated RIPK1-RIPK3 complex. In order to show the regulation of SELENOK in chicken liver, we artificially knocked off SELENOK gene in LMH cells. Through AO/EB staining we also found necroptosis in the siRNA-Se group. Furthermore, the results in LMH cells were coincided with those in chicken (Gallus gallus) liver. Our experiment clarified the molecular mechanism of SELENOK in the regulation and liver necroptosis, and provided reference for the healthy feeding mode of broilers.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Li Y, Zeng P, Xiao J, Huang P, Liu P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov 2022; 8:212. [PMID: 35443725 PMCID: PMC9021256 DOI: 10.1038/s41420-022-00991-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) such as imatinib (IM) are key drugs for treatment of chronic myeloid leukemia (CML). Development of drug resistance to TKIs due to BCR-ABL mutation, especially T315I mutation, poses a major challenge in the clinical treatment of CML. The purpose of this study was to test metabolic modulation as a potential strategy to overcome imatinib resistance based on the possible crosstalk between BCR-ABL signaling and metabolic changes in CML. 2-deoxy-d-glucose (2-DG) was used to modulate the glucose metabolism in CML cells sensitive to IM (KBM5 cell line) and resistant to imatinib with BCR-ABL T315I mutation (KBM5-T315I cell line). Seahorse XFe24 extracellular flux analyzer to quantify oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was used to measure cellular energy metabolism. Cell proliferation was analyzed by CCK-8 assay and MTS assay. Annexin V/PI staining was used to evaluate cell apoptosis. Autophagy-related proteins and enzyme/proteins were detected by Western blotting. Cellular ATP concentration was detected using an ATP-based Cell Titer Kit. The combined action of 2-DG and IM was evaluated by calculating the drug combination index. Our results found that inhibition of glucose metabolism by 2-DG significantly impaired the viability of CML cells and co-treatment with 2-DG and imatinib induced a synergistic inhibition of KBM5 and KBM5-T315I cells. 2-DG induced cell death by autophagy, not by apoptosis, as evidenced by increased expression of Beclin1 and LC3AII and lack of annexin V/PI-positive cells. At the biochemical level, 2-DG inhibited glycolysis and mitochondrial oxygen consumption manifested by a significant decrease in ECAR and OCR, and a depletion of ATP. The severe metabolic stress induced by 2-DG in CML cells led to autophagic cell death. Our results suggested a metabolic vulnerability of CML cells that could be targeted by a combination of 2-DG and imatinib as an alternative treatment for imatinib-resistant CML.
Collapse
Affiliation(s)
- Yiqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Peiting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dong Feng East Road, 510060, Guangzhou, China.
| |
Collapse
|
6
|
Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines. Cells 2021; 10:cells10113058. [PMID: 34831278 PMCID: PMC8616353 DOI: 10.3390/cells10113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed implications of protein glycosylation in the pathobiology of AML including chemoresistance. Accordingly, associations have been found between specific glycan epitopes and the outcome of the disease. To advance this poorly studied field, we performed an exploratory glycomics study characterizing 21 widely used AML cell lines. Exploiting the benefits of porous graphitized carbon chromatography coupled to tandem mass spectrometry (PGC nano-LC-MS2), we qualitatively and quantitatively profiled N- and O-linked glycans. AML cell lines exhibited distinct glycan fingerprints differing in relevant glycan traits correlating with their cellular phenotype as classified by the FAB system. By implementing transcriptomics data, specific glycosyltransferases and hematopoietic transcription factors were identified, which are candidate drivers of the glycan phenotype of these cells. In conclusion, we report the varying expression of glycan structures across a high number of AML cell lines, including those associated with poor prognosis, identified underlying glycosyltransferases and transcription factors, and provide insights into the regulation of the AML glycan repertoire.
Collapse
|
7
|
Abdellateif MS, Kassem AB, El-Meligui YM. Combined Expression of CD34 and FLT3-Internal Tandem Duplication Mutation Predicts Poor Response to Treatment in Acute Myeloid Leukemia. Int J Gen Med 2020; 13:867-879. [PMID: 33116779 PMCID: PMC7584508 DOI: 10.2147/ijgm.s276138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematological malignancy associated with different cytogenetic and genetic abnormalities. Methods FLT3-internal tandem duplication (FLT3/ITD) mutation and CD34 expression levels were assessed in the bone marrow (BM) aspirates of 153 de novo AML patients. Data were correlated with relevant clinic-pathological features of the patients, response to treatment, disease-free survival (DFS), and overall free survival (OS) rates. Results FLT3-ITD mutation was detected in 27/153 (17.6%) AML patients (P=0.001), and CD34 was expressed in 83/153 (54.2%) patients (P=0.293) compared to those with wild FLT3 and CD34− expression, respectively. Patients with FLT3-ITD mutation showed increased peripheral blood and BM blast cells, abnormal cytogenetics, poor DFS and OS compared to those with wild FLT3 (P=0.013, P<0.001, P=0.010, P=0.008 and P=0.004, respectively), while there was no significant association with response to treatment (P=0.081). There was no significant association between CD34 expression and response to treatment, DFS, and OS (P>0.05). FLT3-ITD mutation and FAB subtypes were independent prognostic factors for DFS. Older age ≥39 years, HB <7 mg/dL PB blast ≥54%, and FLT3-ITD mutation were independent prognostic factors for poor OS in AML patients. The presence of both FLT3-ITD mutation and CD34 expression associated significantly with resistance to therapy (P=0.024), short DFS and OS rates (P=0.006, P=0.037, respectively). Conclusion Combined expression of both FLT3-ITD mutation and CD34 expression is an important prognostic and predictive factor for poor disease outcome in AML patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amira B Kassem
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Yomna M El-Meligui
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends Cancer 2020; 6:960-973. [PMID: 32540455 DOI: 10.1016/j.trecan.2020.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Understanding genetic and epigenetic changes that underlie abnormal proliferation of hematopoietic stem and progenitor cells is critical for development of new approaches to monitor and treat leukemia. The unfolded protein response (UPR) is a conserved adaptive signaling pathway that governs protein folding, secretion, and energy production and serves to maintain protein homeostasis in various cellular compartments. Deregulated UPR signaling, which often occurs in hematopoietic stem cells and leukemia, defines the degree of cellular toxicity and perturbs protein homeostasis, and at the same time, offers a novel therapeutic target. Here, we review current knowledge related to altered UPR signaling in leukemia and highlight possible strategies for exploiting the UPR as treatment for this disease.
Collapse
Affiliation(s)
- Ali Khateb
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|