1
|
Ouyang P, Wang L, Wu J, Tian Y, Chen C, Li D, Yao Z, Chen R, Xiang G, Gong J, Bao Z. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors. Front Immunol 2024; 15:1344272. [PMID: 38545114 PMCID: PMC10965539 DOI: 10.3389/fimmu.2024.1344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in treating malignant tumors, though most 'cold' tumors show no response. This resistance mainly arises from the varied immune evasion mechanisms. Hence, understanding the transformation from 'cold' to 'hot' tumors is essential in developing effective cancer treatments. Furthermore, tumor immune profiling is critical, requiring a range of diagnostic techniques and biomarkers for evaluation. The success of immunotherapy relies on T cells' ability to recognize and eliminate tumor cells. In 'cold' tumors, the absence of T cell infiltration leads to the ineffectiveness of ICI therapy. Addressing these challenges, especially the impairment in T cell activation and homing, is crucial to enhance ICI therapy's efficacy. Concurrently, strategies to convert 'cold' tumors into 'hot' ones, including boosting T cell infiltration and adoptive therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key factors that impact tumor T cell infiltration is vital for creating effective treatments targeting 'cold' tumors.
Collapse
Affiliation(s)
- Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lijuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlong Wu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yao Tian
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Caiyun Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dengsheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zengxi Yao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruichang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhen Bao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Zhou J, Tong Y, Zhu W, Sui X, Ma X, Han C. Combination immunotherapy of PEG-modified Preladenant thermosensitive liposomes and PD-1 inhibitor effectively enhances the anti-tumor immune response and therapeutic effects. Pharm Dev Technol 2023:1-8. [PMID: 37191345 DOI: 10.1080/10837450.2023.2214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Immunotherapy is a promising cancer treatment strategy. In contrast, PD-1/PD-L1 inhibitors are associated with low response rates and are only useful in a small group of cancer patients. A combination of treatments may be effective for overcoming this clinical issue. Preladenant is an adenosine receptor inhibitor that can block the adenosine pathway and improve the tumor microenvironment (TME), thereby enhancing the immunotherapeutic effect of PD-1 inhibitors. However, its poor water solubility and low targeting limit its clinical applications. We designed a PEG-modified thermosensitive liposome (pTSL) loaded with adenosine small molecule inhibitor Preladenant (P-pTSL) to overcome these problems and enhance the effect of PD-1 inhibitor on breast cancer immunotherapy. The prepared P-pTSL was round and uniformly distributed with a particle size of (138.9 ± 1.22) nm, PDI: 0.134 ± 0.031 and Zeta potential (-10.1 ± 1.63) mV; Preladenant was released slowly at 37 °C but released fast at 42 °C from P-pTSL, which was 76.52 ± 0.44%. P-pTSL has good long-term and serum stability and excellent tumor-targeting ability in mice. Moreover, the combination with PD-1 inhibitor significantly enhanced the anti-tumor effect, and the improvement of related factors in serum and lymph was more obvious under the condition of 42 °C thermotherapy in vitro.
Collapse
Affiliation(s)
- Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Yao Tong
- Heilongjiang Di 'an Medical Laboratory Co. LTD, Harbin, China
| | - Wenquan Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Sui
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoxing Ma
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- grid.410560.60000 0004 1760 3078The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- grid.49470.3e0000 0001 2331 6153Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- grid.410654.20000 0000 8880 6009Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- grid.443353.60000 0004 1798 8916Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
5
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Tsai CY, Chi HC, Wu RC, Weng CH, Tai TS, Lin CY, Chen TD, Wang YH, Chou LF, Hsu SH, Lin PH, Pang ST, Yang HY. Combination Biomarker of Immune Checkpoints Predict Prognosis of Urothelial Carcinoma. Biomedicines 2021; 10:biomedicines10010008. [PMID: 35052695 PMCID: PMC8772792 DOI: 10.3390/biomedicines10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
In contrast to Western counties, the incidence of urothelial carcinoma (UC) remains mar-edly elevated in Taiwan. Regulatory T cells (Tregs) play a crucial role in limiting immune responses within the tumor microenvironment. To elucidate the relationship between immune checkpoints in the tumor immune microenvironment and UC progression, we utilize the Gene Expression Omnibus (GEO) to analyze a microarray obtained from 308 patients with UC. We observed that the expression level of CD276 or TIM-3 was positively correlated with late-stage UC and poor prognosis. Patients with simultaneously high CD276 and TIM-3 expression in tumors have significantly reduced both univariate and multivariate survival, indicating that mRNA levels of these immune checkpoints could be independent prognostic biomarkers for UC overall survival and recurrence. Our cohort study showed rare CD8+ cytotoxic T-cells and Tregs infiltration during early-stage UC-known as cold tumors. Approximately 30% of late-stage tumors exhibited highly infiltrated cytotoxic T cells with high PD-1 and FOXP3 expression, which implied that cytotoxic T cells were inhibited in the advanced UC microenvironment. Collectively, our findings provide a better prognosis prediction by combined immune checkpoint biomarkers and a basis for early-stage UC standard treatment to convert cold tumors into hot tumors, followed by immune checkpoint therapy.
Collapse
Affiliation(s)
- Chung-Ying Tsai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (R.-C.W.); (T.-D.C.)
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Cheng-Hao Weng
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Tzong-Shyuan Tai
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chan-Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Tai-Di Chen
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (R.-C.W.); (T.-D.C.)
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
| | - Po-Hung Lin
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-H.L.); (S.-T.P.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - See-Tong Pang
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-H.L.); (S.-T.P.)
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hung-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.T.); (C.-H.W.); (C.-Y.L.); (L.-F.C.); (S.-H.H.)
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +886-9753-62616
| |
Collapse
|
7
|
Identified lung adenocarcinoma metabolic phenotypes and their association with tumor immune microenvironment. Cancer Immunol Immunother 2021; 70:2835-2850. [PMID: 33659999 DOI: 10.1007/s00262-021-02896-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), causes high mortality around the world. Previous studies have suggested that the metabolic pattern of tumor is associated with tumor response to immunotherapy and patient's survival outcome. Yet, this relationship in LUAD is still unknown. METHODS Therefore, in this study, we identified the immune landscape in different tumor subtypes classified by metabolism-related genes expression with a large-scale dataset (tumor samples, n = 2181; normal samples, n = 419). We comprehensively correlated metabolism-related phenotypes with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in LUAD patients. RESULTS And we confirmed tumors with activated lipid metabolism tend to have higher immunocytes infiltration and better response to checkpoint immunotherapy. This work highlights the connection between the metabolic pattern of tumor and tumor immune infiltration in LUAD. A scoring system based on metabolism-related gene expression is not only able to predict prognosis of patient with LUAD but also applied to pan-cancer. LUAD response to checkpoint immunotherapy can also be predicted by this scoring system. CONCLUSIONS This work revealed the significant connection between metabolic pattern of tumor and tumor immune infiltration, regulating LUAD patients' response to immunotherapy.
Collapse
|
8
|
Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021; 9:629635. [PMID: 33708759 PMCID: PMC7940769 DOI: 10.3389/fchem.2021.629635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.
Collapse
Affiliation(s)
- Ajita Jindal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sounik Sarkar
- Flowcytometry Facility, Modern Biology Department, University of Calcutta, Kolkata, India
| | - Aftab Alam
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- Charles River Laboratories, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
9
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
10
|
Le Louedec F, Leenhardt F, Marin C, Chatelut É, Evrard A, Ciccolini J. Cancer Immunotherapy Dosing: A Pharmacokinetic/Pharmacodynamic Perspective. Vaccines (Basel) 2020; 8:E632. [PMID: 33142728 PMCID: PMC7712135 DOI: 10.3390/vaccines8040632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune check-point inhibitors are drugs that are markedly different from other anticancer drugs because of their indirect mechanisms of antitumoral action and their apparently random effect in terms of efficacy and toxicity. This marked pharmacodynamics variability in patients calls for reconsidering to what extent approved dosing used in clinical practice are optimal or whether they should require efforts for customization in outlier patients. To better understand whether or not dosing could be an actionable item in oncology, in this review, preclinical and clinical development of immune checkpoint inhibitors are described, particularly from the angle of dose finding studies. Other issues in connection with dosing issues are developed, such as the flat dosing alternative, the putative role therapeutic drug monitoring could play, the rise of combinatorial strategies, and pharmaco-economic aspects.
Collapse
Affiliation(s)
- Félicien Le Louedec
- Institut Claudius-Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, and Cancer Research Center of Toulouse (CRCT), Inserm U1037, University of Toulouse, 31100 Toulouse, France;
| | - Fanny Leenhardt
- Institut de Cancérologie de Montpellier (ICM) and Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, University of Montpellier, 34090 Montpellier, France;
| | - Clémence Marin
- Assistance Publique—Hôpitaux de Marseille (AP-HM) and Simulation Modeling Adaptive Response for Therapeutics in cancer (SMARTc), Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; (C.M.); (J.C.)
| | - Étienne Chatelut
- Institut Claudius-Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, and Cancer Research Center of Toulouse (CRCT), Inserm U1037, University of Toulouse, 31100 Toulouse, France;
| | - Alexandre Evrard
- Centre Hospitalier Universitaire de Nîmes Carémeau, Nîmes, France and IRCM U1194, University of Montpellier, 34090 Montpellier, France;
| | - Joseph Ciccolini
- Assistance Publique—Hôpitaux de Marseille (AP-HM) and Simulation Modeling Adaptive Response for Therapeutics in cancer (SMARTc), Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; (C.M.); (J.C.)
| |
Collapse
|
11
|
Clinical Impact of Tumor-Infiltrating Lymphocytes and PD-L1-Positive Cells as Prognostic and Predictive Biomarkers in Urological Malignancies and Retroperitoneal Sarcoma. Cancers (Basel) 2020; 12:cancers12113153. [PMID: 33121123 PMCID: PMC7692684 DOI: 10.3390/cancers12113153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Two host-dependent biological characteristics, “avoiding immune destruction” and “tumor-promoting inflammation” have been added to cancer hallmarks in 2011. The interaction and cross-talk among tumor cells and several immune cells in a tumor microenvironment are dynamic and complex processes. The purpose of this review is to discuss the prognostic impact of tumor-infiltrating lymphocytes and predictive biomarkers for immune checkpoint inhibitors in four urological solid tumors, the urothelial carcinoma, renal cell carcinoma, prostate cancer, and retroperitoneal sarcoma, through summarizing the findings of observation studies and clinical trials. Abstract Over the past decade, an “immunotherapy tsunami”, more specifically that involving immune checkpoint inhibitors (ICIs), has overtaken the oncological field. The interaction and cross-talk among tumor cells and several immune cells in the tumor microenvironment are dynamic and complex processes. As immune contexture can vary widely across different types of primary tumors and tumor microenvironments, there is still a significant lack of clinically available definitive biomarkers to predict patient response to ICIs, especially in urogenital malignancies. An increasing body of evidence evaluating urological malignancies has proven that tumor-infiltrating lymphocytes (TILs) are a double-edged sword in cancer. There is an urgent need to shed light on the functional heterogeneity in the tumor-infiltrating immune system and to explore its prognostic impact following surgery and other treatments. Notably, we emphasized the difference in the immunological profile among urothelial carcinomas arising from different primary origins, the bladder, renal pelvis, and ureter. Significant differences in the density of FOXP3-positive TILs, CD204-positive tumor-infiltrating macrophages, PD-L1-positive cells, and colony-stimulating factors were observed. This review discusses two topics: (i) the prognostic impact of TILs and (ii) predictive biomarkers for ICIs, to shed light on lymphocyte migration in four solid tumors, the urothelial carcinoma, renal cell carcinoma, prostate cancer, and retroperitoneal sarcoma.
Collapse
|
12
|
Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel AE. Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS NANO 2020; 14:13343-13366. [PMID: 32940463 PMCID: PMC8023019 DOI: 10.1021/acsnano.0c05194] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We developed a custom-designed liposome carrier for codelivery of a potent immunogenic cell death (ICD) stimulus plus an inhibitor of the indoleamine 2,3-dioxygenase (IDO-1) pathway to establish a chemo-immunotherapy approach for solid tumors in syngeneic mice. The carrier was constructed by remote import of the anthraquinone chemotherapeutic agent, mitoxantrone (MTO), into the liposomes, which were further endowed with a cholesterol-conjugated indoximod (IND) prodrug in the lipid bilayer. For proof-of-principle testing, we used IV injection of the MTO/IND liposome in a CT26 colon cancer model to demonstrate the generation of a robust immune response, characterized by the appearance of ICD markers (CRT and HMGB-1) as well as evidence of cytotoxic cancer cell death, mediated by perforin and granzyme B. Noteworthy, the cytotoxic effects involved natural killer (NK) cell, which suggests a different type of ICD response. The immunotherapy response was significantly augmented by codelivery of the IND prodrug, which induced additional CRT expression, reduced number of Foxp3+ Treg, and increased perforin release, in addition to extending animal survival beyond the effect of an MTO-only liposome. The outcome reflects the improved pharmacokinetics of MTO delivery to the cancer site by the carrier. In light of the success in the CT26 model, we also assessed the platform efficacy in further breast cancer (EMT6 and 4T1) and renal cancer (RENCA) models, which overexpress IDO-1. Encapsulated MTO delivery was highly effective for inducing chemo-immunotherapy responses, with NK participation, in all tumor models. Moreover, the growth inhibitory effect of MTO was enhanced by IND codelivery in EMT6 and 4T1 tumors. All considered, our data support the use of encapsulated MTO delivery for chemo-immunotherapy, with the possibility to boost the immune response by codelivery of an IDO-1 pathway inhibitor.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle Chiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Mercedeh Khazaieli
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Qi Liu
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiao Zhang
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Ying Ji
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Brenda Melano
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, California, 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
13
|
Jia L, Pang M, Fan M, Tan X, Wang Y, Huang M, Liu Y, Wang Q, Zhu Y, Yang X. A pH-responsive Pickering Nanoemulsion for specified spatial delivery of Immune Checkpoint Inhibitor and Chemotherapy agent to Tumors. Theranostics 2020; 10:9956-9969. [PMID: 32929327 PMCID: PMC7481420 DOI: 10.7150/thno.46089] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Immune checkpoint (ICP) blockade therapy combined with chemotherapy is a promising treatment strategy for tumors. Chemotherapeutic agents usually function inside the tumor cells, while ICP inhibitors are efficacious out of the tumor cells. It is desirable to effectively co-deliver an ICP inhibitor and a chemotherapy agent to different sites of a tumor. We have designed an effective drug delivery system to accomplish both objectives. Methods: We designed a Pickering nanoemulsion (PNE) using multi-sensitive nanogels with pH-responsive, hydrophilicity-hydrophobicity switch, and redox-responding properties as an oil/water interfacial stabilizer. The D/HY@PNE was employed for specified spatial delivery of the chemotherapy agent doxorubicin (DOX) and ICP inhibitor HY19991 (HY). We systematically investigated the pH-responsive disassembly of PNE, the release of DOX and HY from D/HY@PNE in the tumor microenvironment, enhanced tumor penetration of DOX, immunogenic cell death (ICD), antitumor efficacy, and the immune response induced by D/HY@PNE in vitro and in vivo. Results: D/HY@PNE disassembled to release the ICP inhibitor HY and DOX-loaded nanogels due to the hydrophilicity-hydrophobicity reversal of nanogels in the acidic tumor microenvironment. Quantitative analysis indicates that D/HY@PNE presents enhanced tumor penetration behavior and effectively induces ICD. The strong immune response induced by D/HY@PNE was due to the efficient synergetic combination of chemotherapy and immunotherapy and resulted in enhanced antitumor efficacy in 4T1 tumor-bearing mice. Conclusion: This novel strategy highlights the promising potential of a universal platform to co-deliver different therapeutic or diagnostic reagents with spatial regulation to improve the anti-tumor effect.
Collapse
Affiliation(s)
- Le Jia
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghui Pang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqian Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Menglin Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020; 31:1268-1278. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment significantly influences cancer progression and therapeutic response. Reprogramming of tumor microenvironment has emerged as a strategy to assist conventional cancer treatment. In recent years, photothermal therapy has received considerable attention owing to its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. Apart from ablating cancer cells by generating heat upon light irradiation, photothermal therapy can also affect the tumor microenvironment, such as disrupting the tumor extracellular matrix and tumor vasculature. Moreover, cancer cell death by hyperthermia could potentially activate the immune system to fight against tumor. In this topical review, we focus on the recent progress of photothermal therapy based on tumor microenvironment remodeling, aiming to better guide the design of nanoparticles for cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zemin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
15
|
Liposomal TLR9 Agonist Combined with TLR2 Agonist-Fused Antigen Can Modulate Tumor Microenvironment through Dendritic Cells. Cancers (Basel) 2020; 12:cancers12040810. [PMID: 32231003 PMCID: PMC7225995 DOI: 10.3390/cancers12040810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells involved in T cell activation and differentiation to regulate immune responses. Lipoimmunogens can be developed as pharmaceutical lipoproteins for cancer immunotherapy to target DCs via toll-like receptor 2 (TLR2) signaling. Previously, we constructed a lipoimmunogen, a lipidated human papillomavirus (HPV) E7 inactive mutant (rlipoE7m), to inhibit the growth of HPV16 E7-expressing tumor cells in a murine model. Moreover, this antitumor effect could be enhanced by a combinatory treatment with CpG oligodeoxynucleotides (ODN). To improve safety, we developed a rlipoE7m plus DOTAP liposome-encapsulated native phosphodiester CpG (POCpG/DOTAP) treatment to target DCs to enhance antitumor immunity. We optimized the formulation of rlipoE7m and POCpG/DOTAP liposomes to promote conventional DC and plasmacytoid DC maturation in vitro and in vivo. Combination of rlipoE7m plus POCpG/DOTAP could activate conventional DCs and plasmacytoid DCs to augment IL-12 production to promote antitumor responses by intravenous injection. In addition, the combination of rlipoE7m plus POCpG/DOTAP could elicit robust cytotoxic T lymphocytes (CTLs) by intravenous immunization. Interestingly, the combination of rlipoE7m plus POCpG/DOTAP could efficiently inhibit tumor growth via intravenous immunization. Moreover, rlipoE7m plus POCpG/DOTAP combined reduced the number of tumor-infiltrating regulatory T cells dramatically due to downregulation of IL-10 production by DCs. These results showed that the combination of rlipoE7m plus POCpG/DOTAP could target DCs via intravenous delivery to enhance antitumor immunity and reduce the number of immunosuppressive cells in the tumor microenvironment.
Collapse
|
16
|
Cancer immunotherapy through the prism of adaptation: Will Achilles catch the tortoise? Med Hypotheses 2020; 137:109545. [PMID: 31952020 DOI: 10.1016/j.mehy.2019.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022]
Abstract
There is no secret that despite the rapid development of new methods of cancer therapy, we still are not able to completely destroy the tumor. Every time we attack the tumor, the tumor neutralizes our attempts. Carcinogenesis can be presented as a tree whose branches are different pro-tumor mechanisms and whose trunk is a biological phenomenon that "feeds" those branches. A tree can be destroyed in two ways: either by cutting a branch for a branch without a guarantee that new branches will not grow, or cutting down the trunk and letting the branches wither away. To cut down the trunk, it is necessary to understand the nature of the biological phenomenon, which helps the tumor to avoid attack by the immune system, drugs and immunotherapy. The clue is that the pro-tumor mechanisms are united by one goal - to increase the resistance of the tumor cell to immune factors and drugs. A phenomenon that improves cell resistance is well known in biology - adaptation. If the immunity does not immediately destroy the tumor cell, the cell begins to adapt to it. Our hypothesis is that short range adaptation to immune factors plays a role in the formation of tumor tolerance for immunity and immunotherapy. This gives rise to the idea of reducing the survival of tumor cells by disrupting adaptation mechanisms. Indeed, "turning off" the immune system for a period of time before therapy and applying immunotherapy only to tumor cells that have lost their increased resistance could be a new approach to increase the effectiveness of immunotherapy.
Collapse
|
17
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|