1
|
Ni MM, Yang JF, Miao J, Xu J. Association between genetic variants of transmembrane transporters and susceptibility to anthracycline-induced cardiotoxicity: Current understanding and existing evidence. Clin Genet 2024; 105:115-129. [PMID: 37961936 DOI: 10.1111/cge.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Anthracyclines remain the cornerstone of numerous chemotherapeutic protocols, with beneficial effects against haematological malignancies and solid tumours. Unfortunately, the clinical usefulness of anthracyclines is compromised by the development of cardiotoxic side effects, leading to dose limitations or treatment discontinuation. There is no absolute linear correlation between the incidence of cardiotoxicity and the threshold dose, suggesting that genetic factors may modify the association between anthracyclines and cardiotoxicity risk. And the majority of single nucleotide polymorphisms (SNPs) associated with anthracycline pharmacogenomics were identified in the ATP-binding cassette (ABC) and solute carrier (SLC) transporters, generating increasing interest in the pharmacogenetic implications of their genetic variations for anthracycline-induced cardiotoxicity (AIC). This review focuses on the influence of SLC and ABC polymorphisms on AIC and highlights the prospects and clinical significance of pharmacogenetics for individualised preventive approaches.
Collapse
Affiliation(s)
- Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ju-Fei Yang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Jin Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Cronin M, Seher M, Arsang-Jang S, Lowery A, Kerin M, Wijns W, Soliman O. Multimodal Imaging of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer-A State-of-the-Art Review. J Clin Med 2023; 12:6295. [PMID: 37834939 PMCID: PMC10573256 DOI: 10.3390/jcm12196295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND This review focuses on multimodality imaging of cardiotoxicity in cancer patients, with the aim of evaluating the effectiveness of different techniques in detecting and monitoring cardiac changes associated with cancer therapy. METHODS Eight studies were included in the review, covering various imaging modalities such as cardiac magnetic resonance imaging, echocardiography, and multigated acquisition scanning. RESULTS Cardiac magnetic resonance imaging emerged as the most definitive modality, offering real-time detection, comprehensive assessment of cardiac function, the ability to detect early myocardial changes, and superior detection of cardiotoxicity when compared to the other imaging modalities. The studies also emphasize the importance of parameters such as left ventricular ejection fraction and global longitudinal strain in assessing cardiac function and predicting cardiotoxicity. CONCLUSION Due to the common use of HER2 agents and anthracyclines within the breast cancer population, the LVEF as a critical prognostic measurement for assessing heart health and estimating the severity of left-sided cardiac malfunction is a commonly used endpoint. CTRCD rates differed between imaging modalities, with cardiac MRI the most sensitive. The use of multimodal cardiac imaging remains a nuanced area, influenced by local availability, the clinical question at hand, body habits, and medical comorbidities. All of the imaging modalities listed have a role to play in current care; however, focus should be given to increasing the provision of cardiac MRI for breast cancer patients in the future to optimize the detection of CTRCD and patient outcomes thereafter.
Collapse
Affiliation(s)
- Michael Cronin
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Mehreen Seher
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Shahram Arsang-Jang
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Aoife Lowery
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Michael Kerin
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland
| | - William Wijns
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Osama Soliman
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
- Discipline of Cardiology, Saolta Group, Galway University Hospital, Health Service Executive and CORRIB Core Laboratory, National University of Ireland Galway (NUIG), H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
4
|
Bogle C, Colan SD, Miyamoto SD, Choudhry S, Baez-Hernandez N, Brickler MM, Feingold B, Lal AK, Lee TM, Canter CE, Lipshultz SE. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation 2023; 148:174-195. [PMID: 37288568 DOI: 10.1161/cir.0000000000001151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This scientific statement from the American Heart Association focuses on treatment strategies and modalities for cardiomyopathy (heart muscle disease) in children and serves as a companion scientific statement for the recent statement on the classification and diagnosis of cardiomyopathy in children. We propose that the foundation of treatment of pediatric cardiomyopathies is based on these principles applied as personalized therapy for children with cardiomyopathy: (1) identification of the specific cardiac pathophysiology; (2) determination of the root cause of the cardiomyopathy so that, if applicable, cause-specific treatment can occur (precision medicine); and (3) application of therapies based on the associated clinical milieu of the patient. These clinical milieus include patients at risk for developing cardiomyopathy (cardiomyopathy phenotype negative), asymptomatic patients with cardiomyopathy (phenotype positive), patients with symptomatic cardiomyopathy, and patients with end-stage cardiomyopathy. This scientific statement focuses primarily on the most frequent phenotypes, dilated and hypertrophic, that occur in children. Other less frequent cardiomyopathies, including left ventricular noncompaction, restrictive cardiomyopathy, and arrhythmogenic cardiomyopathy, are discussed in less detail. Suggestions are based on previous clinical and investigational experience, extrapolating therapies for cardiomyopathies in adults to children and noting the problems and challenges that have arisen in this experience. These likely underscore the increasingly apparent differences in pathogenesis and even pathophysiology in childhood cardiomyopathies compared with adult disease. These differences will likely affect the utility of some adult therapy strategies. Therefore, special emphasis has been placed on cause-specific therapies in children for prevention and attenuation of their cardiomyopathy in addition to symptomatic treatments. Current investigational strategies and treatments not in wide clinical practice, including future direction for investigational management strategies, trial designs, and collaborative networks, are also discussed because they have the potential to further refine and improve the health and outcomes of children with cardiomyopathy in the future.
Collapse
|
5
|
Antoniadi K, Thomaidis N, Nihoyannopoulos P, Toutouzas K, Gikas E, Kelaidi C, Polychronopoulou S. Prognostic Factors for Cardiotoxicity among Children with Cancer: Definition, Causes, and Diagnosis with Omics Technologies. Diagnostics (Basel) 2023; 13:1864. [PMID: 37296716 PMCID: PMC10252297 DOI: 10.3390/diagnostics13111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Improvements in the treatment of childhood cancer have considerably enhanced survival rates over the last decades to over 80% as of today. However, this great achievement has been accompanied by the occurrence of several early and long-term treatment-related complications major of which is cardiotoxicity. This article reviews the contemporary definition of cardiotoxicity, older and newer chemotherapeutic agents that are mainly involved in cardiotoxicity, routine process diagnoses, and methods using omics technology for early and preventive diagnosis. Chemotherapeutic agents and radiation therapies have been implicated as a cause of cardiotoxicity. In response, the area of cardio-oncology has developed into a crucial element of oncologic patient care, committed to the early diagnosis and treatment of adverse cardiac events. However, routine diagnosis and the monitoring of cardiotoxicity rely on electrocardiography and echocardiography. For the early detection of cardiotoxicity, in recent years, major studies have been conducted using biomarkers such as troponin, N-terminal pro b-natriuretic peptide, etc. Despite the refinements in diagnostics, severe limitations still exist due to the increase in the above-mentioned biomarkers only after significant cardiac damage has occurred. Lately, the research has expanded by introducing new technologies and finding new markers using the omics approach. These new markers could be used not only for early detection but also for the early prevention of cardiotoxicity. Omics science, which includes genomics, transcriptomics, proteomics, and metabolomics, offers new opportunities for biomarker discovery in cardiotoxicity and may provide an understanding of the mechanisms of cardiotoxicity beyond traditional technologies.
Collapse
Affiliation(s)
- Kondylia Antoniadi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Petros Nihoyannopoulos
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Evangelos Gikas
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| |
Collapse
|
6
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
7
|
Genetic Susceptibility and Mechanisms Underlying the Pathogenesis of Anthracycline-Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5818612. [PMID: 35965684 PMCID: PMC9365594 DOI: 10.1155/2022/5818612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Anthracyclines are chemotherapeutic agents widely used to treat a variety of cancers, and these drugs have revolutionized our management of cancer patients. The dose-dependent cardiotoxicity of anthracyclines, however, remains one of the leading causes of chemotherapy treatment-associated mortality in cancer survivors. Patient threshold doses leading to anthracycline-induced cardiotoxicity (AIC) are highly variable among affected patients. This variability is largely ascribed to genetic variants in individuals' genomes. Here, we briefly discuss the prevailing mechanisms underlying the pathogenesis of AIC, and then, we review the genetic variants, mostly identified through human genetic approaches and identified in cancer survivors. The identification of all genetic susceptibilities and elucidation of underlying mechanisms of AIC can help improve upfront risk prediction assessment for potentially severe cardiotoxicity disease and provide valuable insights into the understanding of AIC pathophysiology, which can be further leveraged to develop targeted pharmacogenetic therapies for those at high risk.
Collapse
|
8
|
Liu X, Qiu Y, Huang N, Liu YH, Wang HH, Yu YN, Song YT, Wan GR, Wang SX, Li P, Yin YL. Citronellal alleviates doxorubicin-induced cardiotoxicity by suppressing oxidative stress and apoptosis via Na + /H + exchanger-1 inhibition. J Biochem Mol Toxicol 2021; 36:e22971. [PMID: 34813134 DOI: 10.1002/jbt.22971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Abstract
The medical usage of Doxorubicin (DOX) as a chemotherapeutic agent is restricted owing to its cardiotoxic properties. This study was designed to explore the effect and underlying mechanisms of Citronellal (CT) on DOX-related cardiotoxicity in rats. Rats were divided into six groups: control, DOX, CT, Lithium chloride (LiCl) (a Na+/H+exchanger-1 [NHE1] activator), DOX + CT, and DOX + CT + LiCl. To induce cardiotoxicity, a cumulative dose of 15 mg/kg DOX was intraperitoneally injected into rats. CT (150 mg/kg) and LiCl (1 mg/kg) were given daily by oral gavage for 6 weeks. CT improved cardiac functional parameters and attenuated the cardiac pathological changes induced by DOX. Further study indicated that CT administration regulated the levels of oxidative stress and apoptosis-related factors and in myocardial tissues, reducing cell per-oxidative damage and apoptosis. Besides this, CT attenuated DOX-induced NHE1 upregulation, and the preventive effects of CT against DOX-induced cardiotoxicity were abrogated by the concurrent administration of LiCl. These results demonstrate that CT could ameliorate DOX-induced cardiotoxicity by inhibiting the NHE1-mediated oxidative stress, apoptosis in rats.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yan-Hua Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Huan-Huan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ya-Nan Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu-Ting Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guang-Rui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ya-Ling Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Noyd DH, Berkman A, Howell C, Power S, Kreissman SG, Landstrom AP, Khouri M, Oeffinger KC, Kibbe WA. Leveraging Clinical Informatics Tools to Extract Cumulative Anthracycline Exposure, Measure Cardiovascular Outcomes, and Assess Guideline Adherence for Children With Cancer. JCO Clin Cancer Inform 2021; 5:1062-1075. [PMID: 34714665 PMCID: PMC9848538 DOI: 10.1200/cci.21.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Cardiovascular disease is a significant cause of late morbidity and mortality in survivors of childhood cancer. Clinical informatics tools could enhance provider adherence to echocardiogram guidelines for early detection of late-onset cardiomyopathy. METHODS Cancer registry data were linked to electronic health record data. Structured query language facilitated the construction of anthracycline-exposed cohorts at a single institution. Primary outcomes included the data quality from automatic anthracycline extraction, sensitivity of International Classification of Disease coding for heart failure, and adherence to echocardiogram guideline recommendations. RESULTS The final analytic cohort included 385 pediatric oncology patients diagnosed between July 1, 2013, and December 31, 2018, among whom 194 were classified as no anthracycline exposure, 143 had low anthracycline exposure (< 250 mg/m2), and 48 had high anthracycline exposure (≥ 250 mg/m2). Manual review of anthracycline exposure was highly concordant (95%) with the automatic extraction. Among the unexposed group, 15% had an anthracycline administered at an outside institution not captured by standard query language coding. Manual review of echocardiogram parameters and clinic notes yielded a sensitivity of 75%, specificity of 98%, and positive predictive value of 68% for International Classification of Disease coding of heart failure. For patients with anthracycline exposure, 78.5% (n = 62) were adherent to guideline recommendations for echocardiogram surveillance. There were significant association with provider adherence and race and ethnicity (P = .047), and 50% of patients with Spanish as their primary language were adherent compared with 90% of patients with English as their primary language (P = .003). CONCLUSION Extraction of treatment exposures from the electronic health record through clinical informatics and integration with cancer registry data represents a feasible approach to assess cardiovascular disease outcomes and adherence to guideline recommendations for survivors.
Collapse
Affiliation(s)
- David H. Noyd
- Department of Pediatrics, The University
of Oklahoma Health Sciences Center, Oklahoma City, OK,Department of Pediatrics, Duke University
Medical Center, Durham, NC,David H. Noyd, MD, MPH, 1200 Children's Ave, A2-14702,
Oklahoma City, OK 73104; e-mail:
| | - Amy Berkman
- Department of Pediatrics, Duke University
Medical Center, Durham, NC
| | | | | | - Susan G. Kreissman
- Department of Pediatrics, The University
of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Andrew P. Landstrom
- Division of Cardiology and Department of
Cell Biology, Department of Pediatrics, Duke University Medical Center, Durham,
NC
| | - Michel Khouri
- Department of Medicine, Duke University
Medical Center, Durham, NC
| | - Kevin C. Oeffinger
- Duke Cancer Institute, Durham, NC,Department of Medicine, Duke University
Medical Center, Durham, NC
| | - Warren A. Kibbe
- Duke Cancer Institute, Durham, NC,Department of Biostatistics and
Bioinformatics, Duke University, Durham, NC
| |
Collapse
|
10
|
Bertrand É, Caru M, Lemay V, Andelfinger G, Laverdiere C, Krajinovic M, Sinnett D, Curnier D. Heart rate response and chronotropic incompetence during cardiopulmonary exercise testing in childhood acute lymphoblastic leukemia survivors. Pediatr Hematol Oncol 2021; 38:564-580. [PMID: 33792487 DOI: 10.1080/08880018.2021.1894279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiopulmonary exercise tests (CPET) focusing on analyses of heart rate (HR) responses and chronotropic incompetence (CI) could provide early information about treatment's negative cardiac effects. We examined childhood acute lymphoblastic leukemia (ALL) survivors' HR response during maximal CPET and identified survivors with CI. A total of 250 childhood ALL survivors underwent a CPET on ergocycle to assess their HR response. We used a multiparametric structure of three methods to assess survivors' CI, as follows: 1) age-predicted HRmax (APMHR): failure to achieve 85% of the APMHR at the peak of CPET; 2) HR reserve (HRR): failure to achieve 80% of the HRR at the peak of CPET; and 3) metabolic chronotropic relationship (MCR): failure to reach an MCR slope ratio >0.8 at each stage of the CPET. Among 250 childhood ALL survivors, 216 survivors performed a maximum CPET. We observed that 73 males and 74 females did not achieve their predicted HRmax. We found that 6 survivors did not achieve 85% of their APMHR (80.9 ± 3.9%) and had an MCR below 80% (53.9 ± 13.8%). In addition, 16 survivors did not achieve 80% of their HRR (71.0 ± 7.4%) and among them, 15 survivors had an MCR below 80% (61.0 ± 12.1%). Survivors with CI had a significantly lower cardiorespiratory fitness than those without CI. This study shows that survivors are at risk of developing altered HR responses and CI many years after the end of their cancer treatments. These findings highlight the importance of early detection of cardiac damage due to cancer treatments.
Collapse
Affiliation(s)
- Émilie Bertrand
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Laboratoire EA 4430 - Clinique Psychanalyse Developpement (CliPsyD), Department of Psychology, University of Paris Nanterre, Nanterre, Ile-de-France, France
| | - Valérie Lemay
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Gregor Andelfinger
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Caroline Laverdiere
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| |
Collapse
|