1
|
Bonkovsky HL, Ghabril M, Nicoletti P, Dellinger A, Fontana RJ, Barnhart H, Gu J, Daly AK, Aithal GP, Phillips EJ, Kleiner DE. Drug-induced liver injury (DILI) ascribed to non-steroidal anti-inflammatory drugs (NSAIDs) in the USA-Update with genetic correlations. Liver Int 2024; 44:1409-1421. [PMID: 38451034 DOI: 10.1111/liv.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To describe patients with NSAID-DILI, including genetic factors associated with idiosyncratic DILI. METHODS In DILIN, subjects with presumed DILI are enrolled and followed for at least 6 months. Causality is adjudicated by a Delphic approach. HLA sequencing of multiethnic NSAID-DILI patients and HLA allele imputation of matching population controls were performed following overall, class and drug-based association analysis. Significant results were tested in a non-Hispanic White (NHW) case-control replication cohort. RESULTS Between September 2004 and March 2022, causality was adjudicated in 2498, and 55 (41 [75%] women) were assessed as likely due to NSAIDs. Median age at onset was 55 y (range 22-83 y). Diclofenac was the causative drug in 29, celecoxib in 7, ibuprofen in 5, etodolac and meloxicam each in 4. Except for meloxicam and oxaprozin (n = 2), the liver injury was hepatocellular with median R 15-25. HLA-DRB1*04:03 and HLA-B*35:03 were significantly more frequent in NSAID-DILI patients than in non-NSAID DILI controls. Interestingly, 85% of the HLA-DRB1*04:03 carriers developed DILI due to the use of acetic acid derivative NSAIDs, supporting the hypothesis that HLA-DRB1*04:03 could be a drug and/or class risk factor. HLA-B*35:03 but not HLA-DRB1*04:03 association was confirmed in the independent NHW replication cohort, which was largely driven by diclofenac. CONCLUSIONS Despite prevalent use, NSAID-DILI is infrequent in the United States. Diclofenac is the most commonly implicated, and adherence to warnings of risk and close observation are recommended. The increased frequency of HLA-B*35:03 and DRB1*04:03, driven by diclofenac, suggests the importance of immune-mediated responses.
Collapse
Affiliation(s)
- Herbert L Bonkovsky
- Department of Internal Medicine, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Marwan Ghabril
- Department of Internal Medicine, Indiana University School of Medicine and IU Hospital, Indianapolis, Indiana, USA
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Dellinger
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Robert J Fontana
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Huiman Barnhart
- Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust, University of Nottingham, Nottingham, UK
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David E Kleiner
- Department of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Mao Y, Ma S, Liu C, Liu X, Su M, Li D, Li Y, Chen G, Chen J, Chen J, Zhao J, Guo X, Tang J, Zhuge Y, Xie Q, Xie W, Lai R, Cai D, Cai Q, Zhi Y, Li X. Chinese guideline for the diagnosis and treatment of drug-induced liver injury: an update. Hepatol Int 2024; 18:384-419. [PMID: 38402364 DOI: 10.1007/s12072-023-10633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/26/2024]
Abstract
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. Currently, the diagnosis of DILI still follows the strategy of exclusion. Therefore, a detailed history taking and a thorough and careful exclusion of other potential causes of liver injury is the key to correct diagnosis. This guideline was developed based on evidence-based medicine provided by the latest research advances and aims to provide professional guidance to clinicians on how to identify suspected DILI timely and standardize the diagnosis and management in clinical practice. Based on the clinical settings in China, the guideline also specifically focused on DILI in chronic liver disease, drug-induced viral hepatitis reactivation, common causing agents of DILI (herbal and dietary supplements, anti-tuberculosis drugs, and antineoplastic drugs), and signal of DILI in clinical trials and its assessment.
Collapse
Affiliation(s)
- Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China.
| | - Shiwu Ma
- Department of Infectious Diseases, The 920th Hospital of Chinese PLA Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch of the 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, The 900th Hospital of Chinese PLA Joint Logistics Support Force, Fuzhou, 350025, Fujian, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Gongying Chen
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Jun Chen
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Jinjun Chen
- Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100088, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dachuan Cai
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qingxian Cai
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Yang Zhi
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| |
Collapse
|
3
|
Wang Y, Zou CL, Zhang J, Qiu LX, Huang YF, Zhao XY, Zou ZS, Jia JD. Development and validation of a novel model to predict liver-related mortality in patients with idiosyncratic drug-induced liver injury. Hepatobiliary Pancreat Dis Int 2023; 22:584-593. [PMID: 37308361 DOI: 10.1016/j.hbpd.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Early identification of patients with high mortality risk is critical for optimizing the clinical management of drug-induced liver injury (DILI). We aimed to develop and validate a new prognostic model to predict death within 6 months in DILI patients. METHODS This multicenter study retrospectively reviewed the medical records of DILI patients admitted to three hospitals. A DILI mortality predictive score was developed using multivariate logistic regression and was validated with area under the receiver operating characteristic curve (AUC). A high-mortality-risk subgroup was identified according to the score. RESULTS Three independent DILI cohorts, including one derivation cohort (n = 741) and two validation cohorts (n = 650, n = 617) were recruited. The DILI mortality predictive (DMP) score was calculated using parameters at disease onset as follows: 1.913 × international normalized ratio + 0.060 × total bilirubin (mg/dL) + 0.439 × aspartate aminotransferase/alanine aminotransferase - 1.579 × albumin (g/dL) - 0.006 × platelet count (109/L) + 9.662. The predictive performance for 6-month mortality of DMP score was desirable, with an AUC of 0.941 (95% CI: 0.922-0.957), 0.931 (0.908-0.949) and 0.960 (0.942-0.974) in the derivation, validation cohorts 1 and 2, respectively. DILI patients with a DMP score ≥ 8.5 were stratified into high-risk group, whose mortality rates were 23-, 36-, and 45-fold higher than those of other patients in the three cohorts. CONCLUSIONS The novel model based on common laboratory findings can accurately predict mortality within 6 months in DILI patients, which should serve as an effective guidance for management of DILI in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Key Laboratory on Translational Medicine on Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Cai-Lun Zou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Key Laboratory on Translational Medicine on Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li-Xia Qiu
- The Third Unit, Department of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Yong-Fa Huang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 100050, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Key Laboratory on Translational Medicine on Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zheng-Sheng Zou
- Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Key Laboratory on Translational Medicine on Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| |
Collapse
|
4
|
Chen X, Hao Z, Wang N, Zhu J, Yi H, Tang S. Genetic Polymorphisms of UDP-Glucuronosyltransferases and Susceptibility to Antituberculosis Drug-Induced Liver Injury: A Systematic Review and Meta-Analysis. J Trop Med 2023; 2023:5044451. [PMID: 37868740 PMCID: PMC10586897 DOI: 10.1155/2023/5044451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Methods The PRISMA statement was strictly followed, and the protocol was registered in PROSPERO (CRD42022339317). The PICOS framework was used: patients received antituberculosis treatment, UGTs polymorphisms (mutants), UGTs polymorphisms (wild), AT-DILI, and case-control studies. Eligible studies were searched through nine databases up to April 27, 2022. The study's qualities were assessed by the revised Little's recommendations. Meta-analysis was conducted with a random-effects model using odds ratios (ORs) with 95% confidence intervals (95% CIs) as the effect size. Results Twelve case-control studies with 2128 cases and 4338 controls were included, and 32 single nucleotide polymorphisms (SNPs) in the seven UGT genes have been reported in Chinese and Korean. All studies were judged as high quality. The pooled results indicated that UGT1A1 rs3755319 (AC vs. AA, OR = 1.454, 95% CI: 1.100-1.921, P = 0.009), UGT2B7 rs7662029 (G vs. A, OR = 1.547, 95% CI: 1.249-1.917, P < 0.0001; GG + AG vs. AA, OR = 2.371, 95% CI: 1.779-3.160, P < 0.0001; AG vs. AA, OR = 2.686, 95% CI: 1.988-3.627, P < 0.0001), and UGT2B7 rs7439366 (C vs. T, OR = 0.585, 95% CI: 0.477-0.717, P < 0.0001; CC + TC vs. TT, OR = 0.347, 95% CI: 0.238-0.506, P < 0.0001; CC vs. TC + TT, OR = 0.675, 95% CI: 0.507-0.898, P = 0.007) might be associated with the risk of AT-DILI. Conclusions The polymorphisms of UGT1A1 rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366 were significantly associated with AT-DILI susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Li QS, Francke S, Snoeys J, Thipphawong J, Romano G, Novak GP. Genome-wide association study of abnormal elevation of ALT in patients exposed to atabecestat. BMC Genomics 2023; 24:513. [PMID: 37658353 PMCID: PMC10472559 DOI: 10.1186/s12864-023-09625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Atabecestat, a potent brain penetrable BACE1 inhibitor that reduces CSF amyloid beta (Aβ), was developed as an oral treatment for Alzheimer's disease (AD). Elevated liver enzyme adverse events were reported in three studies although only one case met Hy's law criteria to predict serious hepatotoxicity. METHOD We performed a case-control genome-wide association study (GWAS) to identify genetic risk variants associated with liver enzyme elevation using 42 cases with alanine transaminase (ALT) above three times the upper limit of normal (ULN) and 141 controls below ULN. Additionally, we performed a GWAS using continuous maximal ALT/ULN (expressed as times the ULN) upon exposure to atabecestat as the outcome measure (n = 285). RESULTS No variant passed the genome-wide significance threshold (p = 5 × 10- 8) in the case-control GWAS. We identified suggestive association signals in genes (NLRP1, SCIMP, and C1QBP) implicated in the inflammatory processes. Among the genes implicated by position mapping using variants suggestively associated (p < 1 × 10- 5) with ALT elevation case-control status, gene sets involved in innate immune response (adjusted p-value = 0.05) and regulation of cytokine production (adjusted p-value = 0.04) were enriched. One genomic region in the intronic region of GABRG3 passed the genome-wide significance threshold in the continuous max(ALT/ULN) GWAS, and this variant was nominally associated with ALT elevation case status (p = 0.009). CONCLUSION The suggestive GWAS signals in the case-control GWAS analysis suggest the potential role of inflammation in atabecestat-induced liver enzyme elevation.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA.
- JRD Data Science, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA.
| | - Stephan Francke
- Computational Science Translational Platforms, Janssen Research & Development, LLC, Spring House, PA, 19477, USA
- Pharmacogenomics & Biomarker in Clinical Development, Cary, NC, USA
| | - Jan Snoeys
- Translational Pharmacokinetics Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, Beerse, Belgium
| | - John Thipphawong
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| | - Gary Romano
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
- Passage Bio, Philadelphia, PA, USA
| | - Gerald P Novak
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| |
Collapse
|
6
|
McGill MR, Kaufman YJ, LoBianco FV, Schleiff MA, Aykin-Burns N, Miller GP. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. LIVERS 2023; 3:310-321. [PMID: 38037613 PMCID: PMC10688230 DOI: 10.3390/livers3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health; Depts. of Pharma-cology & Toxicology and Pathology, College of Medicine; University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Yihong J. Kaufman
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Francesca V. LoBianco
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Mary A. Schleiff
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Nukhet Aykin-Burns
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Grover P. Miller
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| |
Collapse
|
7
|
Singh S, Kumar PVSNK, Kumar JP, Tomo S, Yadav D, Sharma P, Rao M, Banerjee M. Genetic and Epigenetic Basis of Drug-Induced Liver Injury. Semin Liver Dis 2023; 43:163-175. [PMID: 37225145 DOI: 10.1055/a-2097-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug-induced liver injury (DILI) is a rare but severe adverse drug reaction seen in pharmacotherapy and a major cause of postmarketing drug withdrawals. Advances in genome-wide studies indicate that genetic and epigenetic diversity can lead to inter-individual differences in drug response and toxicity. It is necessary to identify how the genetic variations, in the presence of environmental factors, can contribute to development and progression of DILI. Studies on microRNA, histone modification, DNA methylation, and single nucleotide polymorphisms related to DILI were retrieved from databases and were analyzed for the current research and updated to develop this narrative review. We have compiled some of the major genetic, epigenetic, and pharmacogenetic factors leading to DILI. Many validated genetic risk factors of DILI, such as variants of drug-metabolizing enzymes, HLA alleles, and some transporters were identified. In conclusion, these studies provide useful information in risk alleles identification and on implementation of personalized medicine.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - J Pradeep Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Park JE, Ahn CH, Lee HJ, Sim DY, Park SY, Kim B, Shim BS, Lee DY, Kim SH. Antioxidant-Based Preventive Effect of Phytochemicals on Anticancer Drug-Induced Hepatotoxicity. Antioxid Redox Signal 2023; 38:1101-1121. [PMID: 36242510 DOI: 10.1089/ars.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. Recent Advances: To assess DILI, the variety of in vitro and in vivo animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide. Also, the mechanisms on hepatotoxicity by several drugs and herbs have been explored in detail. Recent studies reveal that antioxidants including vitamins and some phytochemicals were reported to prevent against DILI. Critical Issues: Antioxidant therapy with some phytochemicals is noteworthy, since oxidative stress is critically involved in DILI via production of chemically reactive oxygen species or metabolites, impairment of mitochondrial respiratory chain, and induction of redox cycling. Future Directions: For efficient antioxidant therapy, DILI susceptibility, Human Leukocyte Antigen genetic factors, biomarkers, and pathogenesis implicated in hepatotoxicity should be further explored in association with oxidative stress-mediated signaling, while more randomized preclinical and clinical trials are required with optimal safe doses of drugs and/or phytochemicals alone or in combination for efficient clinical practice along with the development of advanced DILI diagnostic tools.
Collapse
Affiliation(s)
- Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Yeon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int 2022; 42:1999-2014. [PMID: 35353431 DOI: 10.1111/liv.15262] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
The epidemiology and aetiology of drug-induced liver injury (DILI) vary across different countries and populations. Overall, DILI is rare in the general population but has become more prevalent in hospitalized patients, especially among patients with unexplained liver conditions. In addition, drugs implicated in DILI differ between Western and Eastern countries. Antibiotics are the leading drugs implicated in DILI in the West, whereas traditional Chinese medicine is the primary cause implicated in DILI in the East. The incidence of herbal and dietary supplements-induced hepatotoxicity is increasing globally. Several genetic and nongenetic risk factors associated with DILI have been described in the literature; however, there are no confirmed risk factors for all-cause DILI. Some factors may contribute to the risk of DILI in a drug-specific manner.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
10
|
Wang CW, Preclaro IAC, Lin WH, Chung WH. An Updated Review of Genetic Associations With Severe Adverse Drug Reactions: Translation and Implementation of Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2022; 13:886377. [PMID: 35548363 PMCID: PMC9081981 DOI: 10.3389/fphar.2022.886377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADR) remain the major problems in healthcare. Most severe ADR are unpredictable, dose-independent and termed as type B idiosyncratic reactions. Recent pharmacogenomic studies have demonstrated the strong associations between severe ADR and genetic markers, including specific HLA alleles (e.g., HLA-B*15:02/HLA-B*57:01/HLA-A*31:01 for carbamazepine-induced severe cutaneous adverse drug reactions [SCAR], HLA-B*58:01 for allopurinol-SCAR, HLA-B*57:01 for abacavir-hypersensitivity, HLA-B*13:01 for dapsone/co-trimoxazole-induced SCAR, and HLA-A*33:01 for terbinafine-induced liver injury), drug metabolism enzymes (such as CYP2C9*3 for phenytoin-induced SCAR and missense variant of TPMT/NUDT15 for thiopurine-induced leukopenia), drug transporters (e.g., SLCO1B1 polymorphism for statin-induced myopathy), and T cell receptors (Sulfanilamide binding into the CDR3/Vα of the TCR 1.3). This mini review article aims to summarize the current knowledge of pharmacogenomics of severe ADR, and the potentially clinical use of these genetic markers for avoidance of ADR.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ivan Arni C Preclaro
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
| | - Wei-Hsiang Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Datasets of well characterized drug or herbal and dietary supplement-associated liver injury has provided a rich resource to identify genetic variants associated with hepatic injury that further supports the role of immune activation in drug-induced liver injury (DILI). RECENT FINDINGS Using DNA microarrays, whole genome sequencing, HLA-restricted DNA sequencing with appropriate ethnically matched population controls have identified HLA-specific genetic variants for drugs or botanical compounds with the same HLA variant associated with different agents. In addition to HLAs, two genes involved with immune signaling were also identified: a functional PTPN22 variant associated with increased DILI risk to any agent or clinical presentation and a variant in ERAP2 hepatic gene expression that trims peptide in preparation for presentation in the HLA cleft increased the risk for DILI in amoxicillin-clavulanate DILI when present with known HLA risk alleles. SUMMARY Variants in HLA and other genes involved in immune regulations further supports immune system activation in DILI. In the future, identifying these variants before exposure may minimize the risk for DILI events, help with assessment of drug causality for causing DILI and with greater understanding of DILI mechanisms, has important implication for future drug development.
Collapse
Affiliation(s)
- Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Kuruvilla R, Scott K, Pirmohamed SM. Pharmacogenomics of Drug Hypersensitivity. Immunol Allergy Clin North Am 2022; 42:335-355. [DOI: 10.1016/j.iac.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Deng J, Fu ZR, Wang L, Liu J, Chen CH, Fang F, Wang XL. Acute liver failure associated with lamotrigine in children with epilepsy: A report of two cases and thoughts on pharmacogenomics. Epilepsy Behav Rep 2022; 20:100568. [PMID: 36345310 PMCID: PMC9636542 DOI: 10.1016/j.ebr.2022.100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
We describe two cases of pediatric acute liver failure after LTG administration in children with epilepsy. Higher dose, rapid titration, and in combination with valproic acid have been linked with higher incidence of LTG hepatotoxicity. It is difficult to identify any single nucleotide polymorphism associated with LTG that causes liver injury or to guide clinical decision making at present.
Pediatric acute liver failure (PALF) is a rare and life-threatening clinical syndrome for which drug-induced liver injury is a cause. Lamotrigine (LTG) is generally a safe and effective antiseizure medication, and PALF related to LTG has rarely been reported. Here, we describe two cases of PALF associated with LTG in children with epilepsy. In both patients, LTG was used in combination with valproic acid at an initial dose exceeding the recommended dose, which increased the risk of adverse reactions. In addition, single nucleotide polymorphisms of genes associated with the pharmacokinetics and pharmacodynamics of LTG were selected for pharmacogenomic testing. However, the results revealed that genotypes of the patients had variable effects on the serum concentration and therapeutic responsiveness of LTG and therefore did not explain the clinical manifestations well. The findings of this case report caution clinicians to be aware of the risk of liver failure when using antiseizure medication in polytherapy, especially LTG in combination with valproic acid. When administered to children, the recommended dosage of LTG should be strictly followed. Further pharmacogenomic studies are needed to help improve the efficacy and safety of epilepsy treatment in the future.
Collapse
Affiliation(s)
- Jie Deng
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zheng-ran Fu
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Long Wang
- Department of Emergency, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jun Liu
- Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chun-hong Chen
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiao-ling Wang
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Corresponding author.
| |
Collapse
|
14
|
Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2021; 10:biomedicines10010055. [PMID: 35052736 PMCID: PMC8772872 DOI: 10.3390/biomedicines10010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) and idiosyncratic drug-induced liver injury (DILI) could share molecular mechanisms involving the immune system. We aimed to identify activation immunological biomarkers in invariant natural killer T (iNKT) and CD4/CD8+ T cells in NAFLD and DILI. Methods: We analyzed the activation profile (CD69, CD25, and HLA-DR) and natural killer group 2 member D (NKG2D) on iNKT cells, and CD4/CD8 T cells in peripheral blood mononuclear cells from NAFLD, with or without significant liver fibrosis, and DILI patients. Results: There was an increase in iNKT cells in NAFLD patients compared to DILI or control subjects. Regarding the cellular activation profile, NAFLD with significant liver fibrosis (F ≥ 2) displayed higher levels of CD69+iNKT cells compared to NAFLD with none or mild liver fibrosis (F ≤ 1) and control patients. CD69+iNKT positively correlated with insulin resistance, aspartate aminotransferase (AST) level, liver fibrosis-4 index (FIB4) and AST to Platelet Ratio Index (APRI). DILI patients showed an increase in CD69+ and HLA-DR+ in both CD4+ and CD8+ T cells, detecting the most relevant difference in the case of CD69+CD8+ T cells. Conclusions: CD69+iNKT may be a biomarker to assess liver fibrosis progression in NAFLD. CD69+CD8+ T cells were identified as a potential distinctive biomarker for distinguishing DILI from NAFLD.
Collapse
|
15
|
Beier JI, Arteel GE. Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharm Sin B 2021; 11:3768-3778. [PMID: 35024305 PMCID: PMC8727918 DOI: 10.1016/j.apsb.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are considered to predominantly possess an inherited or xenobiotic etiology. However, inheritance drives the ability to appropriately adapt to environmental stressors, and disease is the culmination of a maladaptive response. Thus “pure” genetic and “pure” xenobiotic liver diseases are modified by each other and other factors, identified or unknown. The purpose of this review is to highlight the knowledgebase of environmental exposure as a potential risk modifying agent for the development of liver disease by other causes. This exercise is not to argue that all liver diseases have an environmental component, but to challenge the assumption that the current state of our knowledge is sufficient in all cases to conclusively dismiss this as a possibility. This review also discusses key new tools and approaches that will likely be critical to address this question in the future. Taken together, identifying the key gaps in our understanding is critical for the field to move forward, or at the very least to “know what we don't know.”
Collapse
Affiliation(s)
- Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15213, USA
- Corresponding authors.
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Corresponding authors.
| |
Collapse
|
16
|
Huang YS, Wu CY, Chang TT, Peng CY, Lo GH, Hsu CW, Hu CT, Huang YH. Drug-induced liver injury associated with severe cutaneous adverse drug reactions: A nationwide study in Taiwan. Liver Int 2021; 41:2671-2680. [PMID: 34153177 DOI: 10.1111/liv.14990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Severe cutaneous adverse drug reactions (SCARs) including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalized exanthematous pustulosis (AGEP) are high-mortality adverse drug reactions. The risk factors and prognosis of drug-induced liver injury (DILI) concomitant with SCAR warrant clarification. We aimed to evaluate the characteristics and outcomes of DILI with SCAR. METHODS We analysed the database of a 10-year multi-centre prospective study in Taiwan from 2011 to 2020. RESULTS A total of 1415 patients with DILI were enrolled, including 81 cases combined with SJS/TEN, 74 with DRESS, 3 with AGEP and 1257 with pure DILI. Approximated 11.2% of patients had SCAR, of which allopurinol was the leading incriminated drug, followed by sulphonamides and carbamazepine. The SJS/TEN group had the highest mortality (34.6%). Jaundice, acute kidney injury and SJS/TEN were independent risk factors of mortality (odds ratio: 29.54, 4.43 and 4.86, respectively, P < .003). Chronic kidney disease with high-dose allopurinol also contributed to high mortality (78.9%) in cases of allopurinol-induced DILI with SCAR. The HLA-B*5801 was associated with a high risk and mortality of allopurinol-induced DILI with SCAR. Likewise, the HLA-B*1502 was closely related to carbamazepine-induced DILI with SCAR. CONCLUSIONS DILI patients combined with SCAR are common and have a high mortality in Taiwan. Allopurinol is the leading incriminated drug. Jaundice, acute kidney injury and SJS/TEN are risk factors of mortality. HLA-B*5801, chronic kidney disease and high drug dosage also contribute to high mortality in allopurinol-induced DILI with SCAR.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, & National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, & National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yuan Peng
- Department of Internal Medicine, Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Gin-Ho Lo
- Department of Medical Research, Digestive Center, E-DA Hospital, Kaohsiung, Taiwan
| | - Chao-Wei Hsu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Lin-Kou, Taiwan
| | - Chi-Tan Hu
- Division of Gastroenterology and Hepatology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, & National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| |
Collapse
|