1
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024:10.1007/s11864-024-01274-5. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Saari TI, Strang J, Dale O. Clinical Pharmacokinetics and Pharmacodynamics of Naloxone. Clin Pharmacokinet 2024; 63:397-422. [PMID: 38485851 PMCID: PMC11052794 DOI: 10.1007/s40262-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 04/29/2024]
Abstract
Naloxone is a World Health Organization (WHO)-listed essential medicine and is the first choice for treating the respiratory depression of opioids, also by lay-people witnessing an opioid overdose. Naloxone acts by competitive displacement of opioid agonists at the μ-opioid receptor (MOR). Its effect depends on pharmacological characteristics of the opioid agonist, such as dissociation rate from the MOR receptor and constitution of the victim. Aim of treatment is a balancing act between restoration of respiration (not consciousness) and avoidance of withdrawal, achieved by titration to response after initial doses of 0.4-2 mg. Naloxone is rapidly eliminated [half-life (t1/2) 60-120 min] due to high clearance. Metabolites are inactive. Major routes for administration are intravenous, intramuscular, and intranasal, the latter primarily for take-home naloxone. Nasal bioavailability is about 50%. Nasal uptake [mean time to maximum concentration (Tmax) 15-30 min] is likely slower than intramuscular, as reversal of respiration lag behind intramuscular naloxone in overdose victims. The intraindividual, interindividual and between-study variability in pharmacokinetics in volunteers are large. Variability in the target population is unknown. The duration of action of 1 mg intravenous (IV) is 2 h, possibly longer by intramuscular and intranasal administration. Initial parenteral doses of 0.4-0.8 mg are usually sufficient to restore breathing after heroin overdose. Fentanyl overdoses likely require higher doses of naloxone. Controlled clinical trials are feasible in opioid overdose but are absent in cohorts with synthetic opioids. Modeling studies provide valuable insight in pharmacotherapy but cannot replace clinical trials. Laypeople should always have access to at least two dose kits for their interim intervention.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anaesthesiology and Intensive Care, University of Turku, Turku, Finland
- Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - John Strang
- National Addiction Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8BB, UK
| | - Ola Dale
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
3
|
Strauss DG, Li Z, Chaturbedi A, Chakravartula S, Samieegohar M, Mann J, Nallani SC, Prentice K, Shah A, Burkhart K, Boston J, Fu YHA, Dahan A, Zineh I, Florian JA. Intranasal Naloxone Repeat Dosing Strategies and Fentanyl Overdose: A Simulation-Based Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2351839. [PMID: 38261323 PMCID: PMC10807299 DOI: 10.1001/jamanetworkopen.2023.51839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Importance Questions have emerged as to whether standard intranasal naloxone dosing recommendations (ie, 1 dose with readministration every 2-3 minutes if needed) are adequate in the era of illicitly manufactured fentanyl and its derivatives (hereinafter, fentanyl). Objective To compare naloxone plasma concentrations between different intranasal naloxone repeat dosing strategies and to estimate their effect on fentanyl overdose. Design, Setting, and Participants This unblinded crossover randomized clinical trial was conducted with healthy participants in a clinical pharmacology unit (Spaulding Clinical Research, West Bend, Wisconsin) in March 2021. Inclusion criteria included age 18 to 55 years, nonsmoking status, and negative test results for the presence of alcohol or drugs of abuse. Data analysis was performed from October 2021 to May 2023. Intervention Naloxone administered as 1 dose (4 mg/0.1 mL) at 0, 2.5, 5, and 7.5 minutes (test), 2 doses at 0 and 2.5 minutes (test), and 1 dose at 0 and 2.5 minutes (reference). Main Outcomes and Measures The primary outcome was the first prespecified time with higher naloxone plasma concentration. The secondary outcome was estimated brain hypoxia time following simulated fentanyl overdoses using a physiologic pharmacokinetic-pharmacodynamic model. Naloxone concentrations were compared using paired tests at 3 prespecified times across the 3 groups, and simulation results were summarized using descriptive statistics. Results This study included 21 participants, and 18 (86%) completed the trial. The median participant age was 34 years (IQR, 27-50 years), and slightly more than half of participants were men (11 [52%]). Compared with 1 naloxone dose at 0 and 2.5 minutes, 1 dose at 0, 2.5, 5, and 7.5 minutes significantly increased naloxone plasma concentration at 10 minutes (7.95 vs 4.42 ng/mL; geometric mean ratio, 1.95 [1-sided 97.8% CI, 1.28-∞]), whereas 2 doses at 0 and 2.5 minutes significantly increased the plasma concentration at 4.5 minutes (2.24 vs 1.23 ng/mL; geometric mean ratio, 1.98 [1-sided 97.8% CI, 1.03-∞]). No drug-related serious adverse events were reported. The median brain hypoxia time after a simulated fentanyl 2.97-mg intravenous bolus was 4.5 minutes (IQR, 2.1-∞ minutes) with 1 naloxone dose at 0 and 2.5 minutes, 4.5 minutes (IQR, 2.1-∞ minutes) with 1 naloxone dose at 0, 2.5, 5, and 7.5 minutes, and 3.7 minutes (IQR, 1.5-∞ minutes) with 2 naloxone doses at 0 and 2.5 minutes. Conclusions and Relevance In this clinical trial with healthy participants, compared with 1 intranasal naloxone dose administered at 0 and 2.5 minutes, 1 dose at 0, 2.5, 5, and 7.5 minutes significantly increased naloxone plasma concentration at 10 minutes, whereas 2 doses at 0 and 2.5 minutes significantly increased naloxone plasma concentration at 4.5 minutes. Additional research is needed to determine optimal naloxone dosing in the community setting. Trial Registration ClinicalTrials.gov Identifier: NCT04764630.
Collapse
Affiliation(s)
- David G. Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Anik Chaturbedi
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Shilpa Chakravartula
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Mohammadreza Samieegohar
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - John Mann
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Srikanth C. Nallani
- Division of Neuropsychiatric Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration. Silver Spring, Maryland
| | - Kristin Prentice
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
- Booz Allen Hamilton, McLean, Virginia
| | - Aanchal Shah
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
- Booz Allen Hamilton, McLean, Virginia
| | - Keith Burkhart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | | | | | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Issam Zineh
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Jeffry A. Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
4
|
Skulberg AK, Tylleskär I, Dale O. Naloxone administration-no balance without titration. Addiction 2022; 117:2750-2751. [PMID: 35589622 DOI: 10.1111/add.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Arne Kristian Skulberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Divison of Pre-hospital Services, Oslo Universitetssykehus, Oslo, Norway
| | - Ida Tylleskär
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Emergency Medicine and Pre-Hospital Services, St Olavs Hospital University Hospital in Trondheim, Trondheim, Norway
| | - Ola Dale
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Pourtaher E, Payne ER, Fera N, Rowe K, Leung SYJ, Stancliff S, Hammer M, Vinehout J, Dailey MW. Naloxone administration by law enforcement officers in New York State (2015-2020). Harm Reduct J 2022; 19:102. [PMID: 36123614 PMCID: PMC9483860 DOI: 10.1186/s12954-022-00682-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has amplified the need for wide deployment of effective harm reduction strategies in preventing opioid overdose mortality. Placing naloxone in the hands of key responders, including law enforcement officers who are often first on the scene of a suspected overdose, is one such strategy. New York State (NYS) was one of the first states to implement a statewide law enforcement naloxone administration program. This article provides an overview of the law enforcement administration of naloxone in NYS between 2015 and 2020 and highlights key characteristics of over 9000 opioid overdose reversal events. METHODS Data in naloxone usage report forms completed by police officers were compiled and analyzed. Data included 9133 naloxone administration reports by 5835 unique officers located in 60 counties across NYS. Descriptive statistics were used to examine attributes of the aided individuals, including differences between fatal and non-fatal incidents. Additional descriptive analyses were conducted for incidents in which law enforcement officers arrived first at the scene of suspected overdose. Comparisons were made to examine year-over-year trends in administration as naloxone formulations were changed. Quantitative analysis was supplemented by content analysis of officers' notes (n = 2192). RESULTS In 85.9% of cases, law enforcement officers arrived at the scene of a suspected overdose prior to emergency medical services (EMS) personnel. These officers assessed the likelihood of an opioid overdose having occurred based on the aided person's breathing status and other information obtained on the scene. They administered an average of 2 doses of naloxone to aided individuals. In 36.8% of cases, they reported additional administration of naloxone by other responders including EMS, fire departments, and laypersons. Data indicated the aided survived the suspected overdose in 87.4% of cases. CONCLUSIONS With appropriate training, law enforcement personnel were able to recognize opioid overdoses and prevent fatalities by administering naloxone and carrying out time-sensitive medical interventions. These officers provided life-saving services to aided individuals alongside other responders including EMS, fire departments, and bystanders. Further expansion of law enforcement naloxone administration nationally and internationally could help decrease opioid overdose mortality.
Collapse
Affiliation(s)
- Elham Pourtaher
- New York State Department of Health, AIDS Institute, New York, USA.
| | - Emily R Payne
- New York State Department of Health, AIDS Institute, New York, USA
| | - Nicole Fera
- New York State Department of Health, AIDS Institute, New York, USA
| | - Kirsten Rowe
- New York State Department of Health, AIDS Institute, New York, USA
| | | | - Sharon Stancliff
- New York State Department of Health, AIDS Institute, New York, USA
| | - Mark Hammer
- New York State Department of Health, AIDS Institute, New York, USA
| | - Joshua Vinehout
- New York State Division of Criminal Justice Services, Albany, USA
| | - Michael W Dailey
- Department of Emergency Medicine, Albany Medical College, Albany, USA
| |
Collapse
|