1
|
Lopes ROP, Chagas SR, Gomes EDS, Barbosa JCDA, Silva ÍR, Brandão MAG. Benchmarking mobile applications for the health of people with Diabetes Mellitus. Rev Lat Am Enfermagem 2024; 32:e4221. [PMID: 38985044 PMCID: PMC11251684 DOI: 10.1590/1518-8345.7182.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/12/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE to map the content and features of mobile applications on the management of Diabetes Mellitus and their usability on the main operating systems. METHOD benchmarking research. The mapping of apps, content, and resources on the Play Store and App Store platforms was based on an adaptation of the Joanna Briggs Institute's scoping review framework. For the usability analysis, the apps were tested for two weeks and the System Usability Scale instrument was used, with scores between 50-67 points being considered borderline, between 68-84, products with acceptable usability and above 85, excellent user acceptance and, for the analysis, descriptive statistics. RESULTS the most prevalent contents were capillary blood glucose management, diet, oral drug therapy, and insulin therapy. As for resources, diaries and graphs were the most common. With regard to usability, two apps were considered to have excellent usability; 34, products with acceptable usability; 29, the resource may have some flaws but still has acceptable usability standards and 6, with flaws and no usability conditions. CONCLUSION the content and resources of mobile applications address the fundamental points for managing Diabetes Mellitus with user-friendly resources, with usability acceptable to users and have the potential to assist in the management of Diabetes Mellitus in patients' daily lives.
Collapse
Affiliation(s)
- Rafael Oliveira Pitta Lopes
- Universidade Federal do Rio de Janeiro, Escola de Enfermagem Anna Nery, Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Enfermagem do Centro Multidisciplinar, Macaé, RJ, Brazil
| | | | - Eduardo da Silva Gomes
- Universidade Federal do Rio de Janeiro, Escola de Enfermagem Anna Nery, Rio de Janeiro, RJ, Brazil
- Scholarship holder at the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil
| | | | - Ítalo Rodolfo Silva
- Universidade Federal do Rio de Janeiro, Escola de Enfermagem Anna Nery, Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Enfermagem do Centro Multidisciplinar, Macaé, RJ, Brazil
| | - Marcos Antônio Gomes Brandão
- Universidade Federal do Rio de Janeiro, Escola de Enfermagem Anna Nery, Rio de Janeiro, RJ, Brazil
- Scholarship holder at the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil
| |
Collapse
|
2
|
Fontecha J, González I, Barragán A, Lim T. Use and Trends of Diabetes Self-Management Technologies: A Correlation-Based Study. J Diabetes Res 2022; 2022:5962001. [PMID: 35712029 PMCID: PMC9197631 DOI: 10.1155/2022/5962001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022] Open
Abstract
Applications and systems for diabetes self-management are growing and involve a vast majority of factors to consider. This study was aimed at examining the integration of portable technologies for diabetes self-management, as well as benefits and issues arising of its use. From a web-based study on several groups of people with diabetes, most of them accustomed to the daily use of devices and applications for self-control, a deeper analysis based on correlations and inference was conducted considering information about the disease, technology knowledge and devices handling, use of technologies for diabetes control and management, and training with devices from a clinical and educational viewpoint. In this study, more than 70% of participants use Continuous Glucose Systems and additional devices (41.85% also use insulin pumps) which impacts positively on the knowledge of incoming technologies. The "easy to use" factor of current apps for diabetes self-management is the most valuable feature. Also, 88.98% of participants did not use gamification-based methods during the initial training sessions, although gamification is a useful technique in learning stages. An inference analysis shows how specific characteristics of diabetes devices and apps should improve. On the basis of the results, we discuss about benefits, shortcomings, and the state of these technologies and patient needs for the future.
Collapse
Affiliation(s)
- Jesús Fontecha
- MAmI Research Lab. University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iván González
- MAmI Research Lab. University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alfonso Barragán
- MAmI Research Lab. University of Castilla-La Mancha, Ciudad Real, Spain
| | - Theodore Lim
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
3
|
van den Boorn M, Lagerburg V, van Steen SCJ, Wedzinga R, Bosman RJ, van der Voort PHJ. The development of a glucose prediction model in critically ill patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106105. [PMID: 33979752 DOI: 10.1016/j.cmpb.2021.106105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The aim of the current study is to develop a prediction model for glucose levels applicable for all patients admitted to the ICU with an expected ICU stay of at least 24 h. This model will be incorporated in a closed-loop glucose system to continuously and automatically control glucose values. METHODS Data from a previous single-center randomized controlled study was used. All patients received a FreeStyle Navigator II subcutaneous CGM system from Abbott during their ICU stay. The total dataset was randomly divided into a training set and a validation set. A glucose prediction model was developed based on historical glucose data. Accuracy of the prediction model was determined using the Mean Squared Difference (MSD), the Mean Absolute Difference (MAD) and a Clarke Error Grid (CEG). RESULTS The dataset included 94 ICU patients with a total of 134,673 glucose measurements points that were used for modelling. MSD was 0.410 ± 0.495 for the model, the MAD was 5.19 ± 2.63 and in the CEG 99.8% of the data points were in the clinically acceptable regions. CONCLUSION In this study a glucose prediction model for ICU patients is developed. This study shows that it is possible to accurately predict a patient's glucose 30 min ahead based on historical glucose data. This is the first step in the development of a closed-loop glucose system.
Collapse
Affiliation(s)
- M van den Boorn
- OLVG, Department of Intensive Care, Oosterpark 9, 1091 AC Amsterdam, The Netherlands.
| | - V Lagerburg
- OLVG, Medical Physics, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
| | - S C J van Steen
- OLVG, Department of Intensive Care, Oosterpark 9, 1091 AC Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology, Meibergdreef 9, Amsterdam, Netherlands
| | - R Wedzinga
- OLVG, Department of Intensive Care, Oosterpark 9, 1091 AC Amsterdam, The Netherlands; OLVG, Medical Physics, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
| | - R J Bosman
- OLVG, Department of Intensive Care, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
| | - P H J van der Voort
- University of Groningen, University Medical Center Groningen, Department of Intensive Care, Hanzeplein 2, 9713GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Rahman MS, Hossain KS, Das S, Kundu S, Adegoke EO, Rahman MA, Hannan MA, Uddin MJ, Pang MG. Role of Insulin in Health and Disease: An Update. Int J Mol Sci 2021; 22:6403. [PMID: 34203830 PMCID: PMC8232639 DOI: 10.3390/ijms22126403] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Sharnali Das
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.S.H.); (S.D.); (S.K.); (M.A.R.); (M.A.H.); (M.J.U.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (M.S.R.); (E.O.A.)
| |
Collapse
|
5
|
Grunberger G, Sherr J, Allende M, Blevins T, Bode B, Handelsman Y, Hellman R, Lajara R, Roberts VL, Rodbard D, Stec C, Unger J. American Association of Clinical Endocrinology Clinical Practice Guideline: The Use of Advanced Technology in the Management of Persons With Diabetes Mellitus. Endocr Pract 2021; 27:505-537. [PMID: 34116789 DOI: 10.1016/j.eprac.2021.04.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the use of advanced technology in the management of persons with diabetes mellitus to clinicians, diabetes-care teams, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology (AACE) conducted literature searches for relevant articles published from 2012 to 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established AACE protocol for guideline development. MAIN OUTCOME MEASURES Primary outcomes of interest included hemoglobin A1C, rates and severity of hypoglycemia, time in range, time above range, and time below range. RESULTS This guideline includes 37 evidence-based clinical practice recommendations for advanced diabetes technology and contains 357 citations that inform the evidence base. RECOMMENDATIONS Evidence-based recommendations were developed regarding the efficacy and safety of devices for the management of persons with diabetes mellitus, metrics used to aide with the assessment of advanced diabetes technology, and standards for the implementation of this technology. CONCLUSIONS Advanced diabetes technology can assist persons with diabetes to safely and effectively achieve glycemic targets, improve quality of life, add greater convenience, potentially reduce burden of care, and offer a personalized approach to self-management. Furthermore, diabetes technology can improve the efficiency and effectiveness of clinical decision-making. Successful integration of these technologies into care requires knowledge about the functionality of devices in this rapidly changing field. This information will allow health care professionals to provide necessary education and training to persons accessing these treatments and have the required expertise to interpret data and make appropriate treatment adjustments.
Collapse
Affiliation(s)
| | - Jennifer Sherr
- Yale University School of Medicine, New Haven, Connecticut
| | - Myriam Allende
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia
| | | | - Richard Hellman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | | | | - David Rodbard
- Biomedical Informatics Consultants, LLC, Potomac, Maryland
| | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | - Jeff Unger
- Unger Primary Care Concierge Medical Group, Rancho Cucamonga, California
| |
Collapse
|
6
|
Eckstein ML, Weilguni B, Tauschmann M, Zimmer RT, Aziz F, Sourij H, Moser O. Time in Range for Closed-Loop Systems versus Standard of Care during Physical Exercise in People with Type 1 Diabetes: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10112445. [PMID: 34072900 PMCID: PMC8198013 DOI: 10.3390/jcm10112445] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to compare time in range (TIR) (70–180 mg/dL (3.9–10.0 mmol/L)) between fully closed-loop systems (CLS) and standard of care (including hybrid systems) during physical exercise in people with type 1 diabetes (T1D). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Science from January 1950 until January 2020. Randomized controlled trials including studies with different CLS were compared against standard of care in people with T1D. The meta-analysis was performed using the random effects model and restricted maximum likelihood estimation method. Six randomized controlled trials involving 153 participants with T1D of all age groups were included. Due to crossover test designs, studies were included repeatedly (a–d) if CLS or physical exercise interventions were different. Applying this methodology increased the comparisons to a total number of 266 participants. TIR was higher with an absolute mean difference (AMD) of 6.18%, 95% CI: 1.99 to 10.38% in favor of CLS. In a subgroup analysis, the AMD was 9.46%, 95% CI: 2.48% to 16.45% in children and adolescents while the AMD for adults was 1.07% 95% CI: −0.81% to 2.96% in favor of CLS. In this systematic review and meta-analysis CLS moderately improved TIR in comparison to standard of care during physical exercise in people with T1D. This effect was particularly pronounced for children and adolescents showing that the use of CLS improved TIR significantly compared to standard of care.
Collapse
Affiliation(s)
- Max L. Eckstein
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
| | - Benjamin Weilguni
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rebecca T. Zimmer
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
| | - Faisal Aziz
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (M.L.E.); (R.T.Z.)
- Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (B.W.); (F.A.); (H.S.)
- Correspondence: ; Tel.: +49-(0)921-55-3465
| |
Collapse
|
7
|
Fast-Acting Insulin Aspart: A Review of its Pharmacokinetic and Pharmacodynamic Properties and the Clinical Consequences. Clin Pharmacokinet 2021; 59:155-172. [PMID: 31667789 PMCID: PMC7007438 DOI: 10.1007/s40262-019-00834-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fast-acting insulin aspart (faster aspart) is insulin aspart (IAsp) with two added excipients, l-arginine and niacinamide, to ensure formulation stability with accelerated initial absorption after subcutaneous administration compared with previously developed rapid-acting insulins. The pharmacokinetic/pharmacodynamic properties of faster aspart have been characterised in clinical pharmacology trials with comparable overall methodology. In subjects with type 1 (T1D) or type 2 (T2D) diabetes, the serum IAsp concentration–time and glucose-lowering effect profiles are left-shifted for faster aspart compared with IAsp. In addition, faster aspart provides earlier onset, doubling of initial exposure, and an up to 2.5-fold increase in initial glucose-lowering effect within 30 min of subcutaneous injection, as well as earlier offset of exposure and effect. Similar results have been shown using continuous subcutaneous insulin infusion (CSII). The improved pharmacological properties of faster aspart versus IAsp are consistent across populations, i.e. in the elderly, children, adolescents and the Japanese. Thus, the faster aspart pharmacological characteristics more closely resemble the mealtime insulin secretion in healthy individuals, giving faster aspart the potential to further improve postprandial glucose control in subjects with diabetes. Indeed, change from baseline in 1-h postprandial glucose increment is in favour of faster aspart versus IAsp when used as basal-bolus or CSII treatment in phase III trials in subjects with T1D or T2D. This review summarises the currently published results from clinical pharmacology trials with faster aspart and discusses the potential clinical benefits of faster aspart compared with previous rapid-acting insulin products.
Collapse
|
8
|
Wang Z, Wang J, Kahkoska AR, Buse JB, Gu Z. Developing Insulin Delivery Devices with Glucose Responsiveness. Trends Pharmacol Sci 2021; 42:31-44. [PMID: 33250274 PMCID: PMC7758938 DOI: 10.1016/j.tips.2020.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Individuals with type 1 and advanced type 2 diabetes require daily insulin therapy to maintain blood glucose levels in normoglycemic ranges to prevent associated morbidity and mortality. Optimal insulin delivery should offer both precise dosing in response to real-time blood glucose levels as well as a feasible and low-burden administration route to promote long-term adherence. A series of glucose-responsive insulin delivery mechanisms and devices have been reported to increase patient compliance while mitigating the risk of hypoglycemia. This review discusses currently available insulin delivery devices, overviews recent developments towards the generation of glucose-responsive delivery systems, and provides commentary on the opportunities and barriers ahead regarding the integration and translation of current glucose-responsive insulin delivery designs.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Galindo RJ, Aleppo G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res Clin Pract 2020; 170:108502. [PMID: 33065179 PMCID: PMC7736459 DOI: 10.1016/j.diabres.2020.108502] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring of glucose levels is essential to effective diabetes management. Over the past 100 years, there have been numerous innovations in glucose monitoring methods. The most recent advances have centered on continuous glucose monitoring (CGM) technologies. Numerous studies have demonstrated that use of continuous glucose monitoring confers significant glycemic benefits on individuals with type 1 diabetes (T1DM) and type 2 diabetes (T2DM). Ongoing improvements in accuracy and convenience of CGM devices have prompted increasing adoption of this technology. The development of standardized metrics for assessing CGM data has greatly improved and streamlined analysis and interpretation, enabling clinicians and patients to make more informed therapy modifications. However, many clinicians many be unfamiliar with current CGM and how use of these devices may help individuals with T1DM and T2DM achieve their glycemic targets. The purpose of this review is to present an overview of current CGM systems and provide guidance to clinicians for initiating and utilizing CGM in their practice settings.
Collapse
Affiliation(s)
- Rodolfo J Galindo
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 69 Jesse Hill Jr. Dr., Glenn Building, Suite 202, Atlanta, GA, 30303, USA.
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 530, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomater 2020; 108:46-55. [PMID: 32289495 DOI: 10.1016/j.actbio.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The surgical implant is an interdisciplinary therapeutic modality that offers unique advantages in the daily practice of otorhinolaryngology. Some well-known examples include cochlear implants, bone-anchored hearing aids, sinus stents, and tracheostomy tubes. Neuroprotective, osteogenic, anti-inflammatory, and antimicrobial effects are among their established or pursued functions. Implant-based drug delivery affords an efficient and potent approach to enhancing these therapeutic functions. Recent innovations have infiltrated all four elements of a drug-eluting implant. The purpose of this pre-clinical, biotechnology-oriented review is to discuss these developments in terms of the implant biomaterial, loaded medication, delivery pattern, and system fabrication. Cell-mediated neurotrophin release, fabrication of a hydroxyapatite-supported system, biodegradable polymer-based implants, and multiclass and multidrug delivery are some representative advancements. The ultimate goal here is to bridge the gap between biotechnology advances and clinical needs. The review is concluded with a perspective regarding the future opportunities and challenges in this popular and rapidly developing subject of research. STATEMENT OF SIGNIFICANCE: Surgical implants and local drug delivery are representative modern modalities of surgical treatment and medical treatment, respectively. Their synergy offers unique therapeutic advantages, such as minimal systemic side effects, proximity-related high efficiency, and potential absorbability. The applications of implant-based drug delivery have infiltrated otorhinolaryngology and head & neck surgery, which is well known for its related tissue diversity and surgical complexity. Examples discussed here include cochlear implants, bone-anchored hearing aids, sinus stents, and airway tubes. This timely review focuses primarily on the four fundamental components of an implant-based drug delivery system, namely implant biomaterial, loaded medication, delivery pattern, and system fabrication. A particular emphasis is placed upon the in vitro cellular and in vivo animal studies that demonstrate pre-clinical potentials.
Collapse
|
11
|
Gunduz A, Opri E, Gilron R, Kremen V, Worrell G, Starr P, Leyde K, Denison T. Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples. ACTA ACUST UNITED AC 2019; 2:29-41. [PMID: 33868718 PMCID: PMC7610621 DOI: 10.2217/bem-2019-0008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain–machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida Gainesville, Gainesville, FL 32611, USA
| | - Enrico Opri
- Department of Biomedical Engineering, University of Florida Gainesville, Gainesville, FL 32611, USA
| | - Ro'ee Gilron
- School of Medicine, University of California San Francisco, San Francisco CA 94143, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Phil Starr
- School of Medicine, University of California San Francisco, San Francisco CA 94143, USA
| | - Kent Leyde
- Cadence Neuroscience Inc, Sammamish, WA 98074, USA
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
12
|
Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21:47. [PMID: 31104136 PMCID: PMC7161312 DOI: 10.1007/s10544-019-0389-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Andrea Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Oncology and Onco-Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Alcántara-Aragón V. Improving patient self-care using diabetes technologies. Ther Adv Endocrinol Metab 2019; 10:2042018818824215. [PMID: 30728941 PMCID: PMC6351708 DOI: 10.1177/2042018818824215] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes technologies are an unstoppable phenomenon. They offer opportunities to improve patient self-care through empowerment. However, they can be a challenge for both patients and clinicians. Thus, the use of technology may empower or burden. To understand and benefit from the use of diabetes technologies, one must understand the currently unmet needs in diabetes management. These unmet needs call for perspectives beyond glycated hemoglobin and an evaluation of technology solutions. Optimal use of these technologies is necessary to obtain benefits and achieve cost-effectiveness; this process depends on diabetes education and training. This review evaluates clinician and patient perspectives regarding diabetes technologies, followed by an evaluation of technology solutions. Diabetes technology solutions are evaluated according to available results about their effectiveness and their potential to empower people living with diabetes.
Collapse
Affiliation(s)
- Valeria Alcántara-Aragón
- Endocrinology and Nutrition Department, Hospital de la Santa Creu I Sant Pau, Sant Antoni Maria Claret 167, Barcelona, 08025, Spain
| |
Collapse
|