1
|
Montanaro D, Vavla M, Frijia F, Coi A, Baratto A, Pasquariello R, Stefan C, Martinuzzi A. Metabolite profile in hereditary spastic paraplegia analyzed using magnetic resonance spectroscopy: a cross-sectional analysis in a longitudinal study. Front Neurosci 2024; 18:1416093. [PMID: 39193522 PMCID: PMC11347332 DOI: 10.3389/fnins.2024.1416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Background Hereditary Spastic Paraplegias (HSP) are genetic neurodegenerative disorders affecting the corticospinal tract. No established neuroimaging biomarker is associated with this condition. Methods A total of 46 patients affected by HSP, genetically and clinically evaluated and tested with SPRS scores, and 46 healthy controls (HC) matched by age and gender underwent a single-voxel Magnetic Resonance Spectroscopy sampling (MRS) of bilateral pre-central and pre-frontal regions. MRS data were analyzed cross-sectionally (at T0 and T1) and longitudinally (T0 vs. T1). Results Statistically significant data showed that T0 mI/Cr in the pre-central areas of HSP patients was higher than in HC. In the left (L) pre-central area, NAA/Cr was significantly lower in HSP than in HC. In the right (R) pre-frontal area, NAA/Cr was significantly lower in HSP patients than in HC. HSP SPG4 subjects had significantly lower Cho/Cr concentrations in the L pre-central area compared to HC. Among the HSP subjects, non-SPG4 patients had significantly higher mI/Cr in the L pre-central area compared to SPG4 patients. In the R pre-frontal area, NAA/Cr was reduced, and ml/Cr was higher in non-SPG4 patients compared to SPG4 patients. Comparing "pure" and "complex" forms, NAA/Cr was higher in pHSP than in cHSP in the R pre-central and R pre-frontal areas. The longitudinal analysis, which involved fewer patients (n = 30), showed an increase in mI/Cr concentration in the L pre-frontal area among HSP subjects with respect to baseline. The patients had significantly higher SPRS scores at follow-up, with a significant positive correlation between SPRS scores and mI/Cr in the L pre-central area, while in bilateral pre-frontal areas, lower SPRS scores corresponded to higher NAA/Cr concentrations. To explore the discriminating power of MRS in correctly identifying HSP and controls, an inference tree methodology classified HSP subjects and controls with an overall accuracy of 73.9%, a sensitivity of 87.0%, and a specificity of 60.9%. Conclusion This pilot study indicates that brain MRS is a valuable approach that could potentially serve as an objective biomarker in HSP.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Marinela Vavla
- Child and Adolescent Neuropsychiatric Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padova, Italy
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandra Baratto
- Department of Radiology, S. Maria dei Battuti Hospital- Conegliano, Treviso, Italy
| | - Rosa Pasquariello
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cristina Stefan
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| |
Collapse
|
2
|
Warepam M, Mishra AK, Sharma GS, Kumari K, Krishna S, Khan MSA, Rahman H, Singh LR. Brain Metabolite, N-Acetylaspartate Is a Potent Protein Aggregation Inhibitor. Front Cell Neurosci 2021; 15:617308. [PMID: 33613199 PMCID: PMC7894078 DOI: 10.3389/fncel.2021.617308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Deposition of toxic protein inclusions is a common hallmark of many neurodegenerative disorders including Alzheimer's disease, Parkinson disease etc. N-acetylaspartate (NAA) is an important brain metabolite whose levels got altered under various neurodegenerative conditions. Indeed, NAA has been a widely accepted biological marker for various neurological disorders. We have also reported that NAA is a protein stabilizer. In the present communication, we investigated the role of NAA in modulating the aggregation propensity on two model proteins (carbonic anhydrase and catalase). We discovered that NAA suppresses protein aggregation and could solubilize preformed aggregates.
Collapse
Affiliation(s)
- Marina Warepam
- Department of Biotechnology, Manipur University, Manipur, India
| | | | - Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamidur Rahman
- Department of Biotechnology, Manipur University, Manipur, India
| | | |
Collapse
|
3
|
Ruiz M, Martínez-Vidal AF, Morales JM, Monleón D, Giménez Y Ribotta M. Neurodegenerative changes are prevented by Erythropoietin in the pmn model of motoneuron degeneration. Neuropharmacology 2014; 83:137-53. [PMID: 24769002 DOI: 10.1016/j.neuropharm.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/02/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
Motoneuron diseases are fatal neurodegenerative disorders characterized by a progressive loss of motoneurons, muscle weakness and premature death. The progressive motor neuronopathy (pmn) mutant mouse has been considered a good model for the autosomal recessive childhood form of spinal muscular atrophy (SMA). Here, we investigated the therapeutic potential of Erythropoietin (Epo) on this mutant mouse. Symptomatic or pre-symptomatic treatment with Epo significantly prolongs lifespan by 84.6% or 87.2% respectively. Epo preserves muscle strength and significantly attenuates behavioural motor deficits of mutant pmn mice. Histological and metabolic changes in the spinal cord evaluated by immunohistochemistry, western blot, and high-resolution (1)H-NMR spectroscopy were also greatly prevented by Epo-treatment. Our results illustrate the efficacy of Epo in improving quality of life of mutant pmn mice and open novel therapeutic pathways for motoneuron diseases.
Collapse
Affiliation(s)
- Marta Ruiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - Ana Fe Martínez-Vidal
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universidad de Valencia, Valencia, Spain
| | - Daniel Monleón
- Fundación de Investigación del Hospital Clínico Universitario de Valencia (FIHCUV), Valencia, Spain
| | - Minerva Giménez Y Ribotta
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Foerster BR, Welsh RC, Feldman EL. 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 2013; 9:513-24. [PMID: 23917850 DOI: 10.1038/nrneurol.2013.153] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.
Collapse
Affiliation(s)
- Bradley R Foerster
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
5
|
Carew JD, Nair G, Andersen PM, Wuu J, Gronka S, Hu X, Benatar M. Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS. Neurology 2011; 77:1370-5. [PMID: 21940617 PMCID: PMC3182757 DOI: 10.1212/wnl.0b013e318231526a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/14/2011] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE It has been speculated that amyotrophic lateral sclerosis (ALS) is characterized by a premanifest period during which neurodegeneration precedes the appearance of clinical manifestations. Magnetic resonance spectroscopy (MRS) was used to measure ratios of neurometabolites in the cervical spine of asymptomatic individuals with a mutation in the SOD1 gene (SOD1+) and compare their neurometabolic ratios to patients with ALS and healthy controls. METHODS A cross-sectional study of (1)H-MRS of the cervical spine was performed on 24 presymptomatic SOD1+ volunteers, 29 healthy controls, and 23 patients with ALS. All presymptomatic subjects had no symptoms of disease, normal forced vital capacity, and normal electromyographic examination. Relative concentrations of choline (Cho), creatine (Cr), myo-inositol (Myo), and N-acetylaspartate (NAA) were determined. RESULTS NAA/Cr and NAA/Myo ratios are reduced in both SOD1+ subjects (39.7%, p = 0.001 and 18.0%, p = 0.02) and patients with ALS (41.2%, p < 0.001 and 24.0%, p = 0.01) compared to controls. Myo/Cr is reduced (10.3%, p = 0.02) in SOD1+ subjects compared to controls, but no difference was found between patients with ALS and controls. By contrast, NAA/Cho is reduced in patients with ALS (24.0%, p = 0.002), but not in presymptomatic SOD1+ subjects compared to controls. CONCLUSIONS Changes in neurometabolite ratios in the cervical spinal cord are evident in presymptomatic SOD1+ individuals in advance of symptoms and clinical or electromyographic signs of disease. These changes reflect a reduction in NAA/Cr and NAA/Myo. Neurometabolic changes in this population resemble changes observed in patients with clinically apparent ALS. This suggests that neurometabolic changes occur early in the course of the disease process.
Collapse
Affiliation(s)
- J D Carew
- Carolinas HealthCare System, Charlotte, NC, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol 2011; 232:290-8. [PMID: 21963649 DOI: 10.1016/j.expneurol.2011.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 11/24/2022]
Abstract
Reliable and objective markers of neuronal function and pathology that can directly assess the effects of neuroprotective treatments in the brain are urgently needed for clinical trials in neurodegenerative diseases. Here we assessed the sensitivity of high field proton magnetic resonance spectroscopy ((1)H MRS) to monitor reversal of neurodegeneration by taking advantage of a well characterized conditional mouse model of spinocerebellar ataxia type 1 (SCA1), where the cerebellar pathology and ataxic phenotype are reversible by doxycycline administration. Transgene expression was suppressed by feeding the mice with chow that contains doxycycline from 6 to 12 weeks of age in an early stage group and from 12 to 24 weeks in a mid-stage group. Cerebellar neurochemical profiles of treated and untreated conditional mice were measured at 9.4 tesla (T) before and after treatment and compared to those of wild type (WT) controls, as well as to histology measures (molecular layer thickness in the primary fissure and a global pathological severity score). Concentrations of N-acetylaspartate (NAA) and myo-inositol in the treated mice trended toward normalization to WT levels in both the early and mid-stage groups. The NAA-to-myo-inositol ratio was significantly different between the treated vs. untreated SCA1 mice and demonstrated partial reversal to WT values both at early and mid-stage, consistent with the histological measures. Taurine and total creatine levels were completely normalized in early and mid-stage treatment groups, respectively. The MRS markers were a more sensitive measure of treatment response than the histological measures from the same volume-of-interest in the early stage group. NAA, myo-inositol and taurine levels were significantly correlated with the histology measures in data combined from all groups. These data demonstrate that MRS markers reliably detect rescue from neuronal pathology and imply that the neurochemical levels measured by MRS accurately reflect treatment efficacy. Therefore this study presents an important step in validating MRS biomarkers as potential surrogate markers to evaluate therapeutics in pre-clinical and clinical trials in SCA1.
Collapse
|
7
|
MRS study of the effects of minocycline on markers of neuronal and microglial integrity in ALS. Magn Reson Imaging 2010; 28:1456-60. [DOI: 10.1016/j.mri.2010.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/28/2010] [Accepted: 06/25/2010] [Indexed: 01/03/2023]
|
8
|
Arun P, Moffett JR, Namboodiri AMA. Riluzole decreases synthesis of N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells. Brain Res 2010; 1334:25-30. [PMID: 20394738 DOI: 10.1016/j.brainres.2010.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
N-acetylaspartate (NAA) is present at very high concentrations in the brain and is used as a non-invasive marker of neuronal viability in magnetic resonance spectroscopy. N-acetylaspartylglutamate (NAAG) is an acetylated dipeptide formed from NAA, and may be an agonist of the mGluR3 receptor. Both NAA and NAAG are synthesized primarily in neurons. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder resulting in motor neuron death, and progressive paralysis. Levels of both NAA and NAAG are reported to be decreased in ALS. Riluzole is a glutamatergic modulating agent used to treat ALS, but there are conflicting results in the literature concerning the recovery of NAA after riluzole treatment. We studied the effects of riluzole on the biosynthesis of both NAA and NAAG in SH-SY5Y human neuroblastoma cells. We used two methodologies to examine the effect; one involving radiolabel incorporation from corresponding substrates into NAA and NAAG, and the other involving the measurement of endogenous NAA and NAAG levels using HPLC. We show that riluzole treatment, which decreases glutamatergic neuronal excitation, decreases the synthesis and levels of both NAA and NAAG in SH-SY5Y cells in a dose and time dependant manner. These results suggest that the synthesis of NAA and NAAG may be coupled to glutamatergic neurotransmission, and further investigations along these lines are warranted.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | | | |
Collapse
|
9
|
Choi JK, Küstermann E, Dedeoglu A, Jenkins BG. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 2009; 30:2143-50. [PMID: 19930399 DOI: 10.1111/j.1460-9568.2009.07015.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the effects of disease progression on brain regional neurochemistry in a mutant mouse model of familial amyotrophic lateral sclerosis (FALS; the G93A model) using in vivo and in vitro magnetic resonance spectroscopy (MRS). There were numerous changes in the brain spectra that were brain region dependent. At early time points starting around 80 days of age there were increases in brain glutamate. At later time points there were more extensive changes including decreased N-acetyl aspartate and glutamate and increased glutamine, taurine and myo-inositol. The effects of the disease were most severe in spinal cord followed by medulla and then sensorimotor cortex. There were no changes noted in cerebellum as a control region. The effects of creatine supplementation in the diet (2%) were measured in wild-type and FALS animals in medulla, cerebellum and cortex. The increase in brain creatine was largest in cerebellum (25%) followed by medulla (11%) and then cortex (4%), reflecting the ordering of creatine kinase activity. There was a protective effect of creatine on N-acetyl aspartate loss in the medulla at late stages. Creatine supplementation had a positive effect on weight retention, leading to a 13% increase in weight between 120 and 130 days. MRS shows promise in monitoring multiple facets of neuroprotective strategies in ALS and ALS models.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
10
|
Unrath A, Ludolph AC, Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. J Neurol 2007; 254:1099-106. [PMID: 17431700 DOI: 10.1007/s00415-006-0495-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/23/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Biomarkers beyond clinical assessment are needed in patients who suffer from amyotrophic lateral sclerosis (ALS). Here, single-voxel proton magnetic resonance spectroscopy ((1)H MRS) of the gray matter of the motor cortex and the white matter including the pyramidal tracts was used to investigate concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol, glutamate, and glutamine in patients with definite ALS in a longitudinal design (three measurements at study inclusion, after 3 and 6 months). A volume-corrected analysis of gray and white matter fractions within the volumes of interest (VOI) was performed for the identification of the absolute metabolite concentrations. The patient group showed a significant decline of the compound NAA over time in the motor cortex areas both of the clinically more and less affected hemisphere between first measurement and month 6 and for the less affected side additionally between first measurement and month 3. For the NAA/(Cr + Cho) ratio, significant decline in the less affected hemisphere was observed from the first measurement to month 3 and to month 6 as well as from month 3 to month 6. In contrast, neither NAA nor the NAA/(Cr + Cho) ratios in the white matter areas showed any significant alterations. All other compounds showed no significant changes over time. In summary, the longitudinal changes of cortical metabolite concentrations in the course of ALS could be assessed by optimized (1)H MRS techniques at group level, so that (1)H MRS parameters, in particular volume-corrected values of NAA in the clinically less affected hemisphere, seem to have the potential to serve as a surrogate marker for monitoring ALS disease progression.
Collapse
Affiliation(s)
- Alexander Unrath
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | | |
Collapse
|
11
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1006] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|