1
|
Lu YC, Chang TK, Lin TC, Yeh ST, Lin HS, Cheng QP, Huang CH, Fang HW, Huang CH. Potential role of calcium sulfate/β-tricalcium phosphate/graphene oxide nanocomposite for bone graft application_mechanical and biological analyses. J Orthop Surg Res 2024; 19:644. [PMID: 39396014 PMCID: PMC11470679 DOI: 10.1186/s13018-024-05142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Bone grafts are extensively used for repairing bone defects and voids in orthopedics and dentistry. Moldable bone grafts offer a promising solution for treating irregular bone defects, which are often difficult to fill with traditional rigid grafts. However, practical applications have been limited by insufficient mechanical strength and rapid degradation. METHODS This study developed a ceramic composite bone graft composed of calcium sulfate (CS), β-tricalcium phosphate (β-TCP) with/without graphene oxide (GO) nano-particles. The biomechanical properties, degradation rate, and in-vitro cellular responses were investigated. In addition, the graft was implanted in-vivo in a critical-sized calvarial defect model. RESULTS The results showed that the compressive strength significantly improved by 135% and the degradation rate slowed by 25.5% in comparison to the control model. The addition of GO nanoparticles also improved cell compatibility and promoted osteogenic differentiation in the in-vitro cell culture study and was found to be effective at promoting bone repair in the in-vivo animal model. CONCLUSIONS The mixed ceramic composites presented in this study can be considered as a promising alternative for bone graft applications.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Ting Yeh
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Shih Lin
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Qiao-Ping Cheng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Chang-Hung Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Kashte SB, Kadam S, Maffulli N, Potty AG, Migliorini F, Gupta A. Osteoinductive potential of graphene and graphene oxide for bone tissue engineering: a comparative study. J Orthop Surg Res 2024; 19:527. [PMID: 39215309 PMCID: PMC11365281 DOI: 10.1186/s13018-024-05028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Bone defects, especially critical-size bone defects, and their repair pose a treatment challenge. Osteoinductive scaffolds have gained importance given their potential in bone tissue engineering applications. METHODS Polycaprolactone (PCL) scaffolds are used for their morphological, physical, cell-compatible and osteoinductive properties. The PCL scaffolds were prepared by electrospinning, and the surface was modified by layer-by-layer deposition using either graphene or graphene oxide. RESULTS Graphene oxide-coated PCL (PCL-GO) scaffolds showed a trend for enhanced physical properties such as fibre diameter, wettability and mechanical properties, yield strength, and tensile strength, compared to graphene-modified PCL scaffolds (PCL-GP). However, the surface roughness of PCL-GP scaffolds showed a higher trend than PCL-GO scaffolds. In vitro studies showed that both scaffolds were cell-compatible. Graphene oxide on PCL scaffold showed a trend for enhanced osteogenic differentiation of human umbilical cord Wharton's jelly-derived Mesenchymal Stem Cells without any differentiation media than graphene on PCL scaffolds after 21 days. CONCLUSION Graphene oxide showed a trend for higher mineralisation, but this trend is not statistically significant. Therefore, graphene and graphene oxide have the potential for bone regeneration and tissue engineering applications. Future in vivo studies and clinical trials are warranted to justify their ultimate clinical use.
Collapse
Affiliation(s)
- Shivaji Bhikaji Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur, 416006, India
| | - Sachin Kadam
- Sophisticated Analytical and Technical Help Institute, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, ST5 5BG, UK
| | - Anish G Potty
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX, 78045, USA
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano, Bolzano, Italy.
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA, 30043, USA.
| |
Collapse
|
3
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
4
|
Lu YC, Hsu LI, Lin CF, Hsu CP, Chang TK, Cheng CC, Huang CH. Biomechanical characteristics of self-expanding sinus stents during crimping and deployment_A comparison between different biomaterials. J Mech Behav Biomed Mater 2023; 138:105669. [PMID: 36634436 DOI: 10.1016/j.jmbbm.2023.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Self-expanding sinus stents are often used in functional endoscopic sinus surgery to treat inflamed sinuses. The PROPEL self-expanding sinus stent offers mechanical support to the sinus cavity to prevent restenosis. The stent is made of a bioabsorbable material (PLGA) that disappears after wound healing. However, complications such as foreign body sensation and severe stent migration/expulsion have been reported after implantation. Little is known about the contact characteristics of self-expanding sinus stents from when the stent is crimped into the insertion device through to deployment into the sinus cavity. This current study developed a test platform to analyze the biomechanical behavior of the stent during this process. Three common bioabsorbable materials, PLGA, PCL and Mg alloy, were evaluated to understand how the choice of material affects the biomechanical characteristics of self-expanding sinus stents. The results showed that the material can have a considerable influence on the contact characteristics during crimping and deployment. When crimped, the PLGA and Mg alloy stents showed much higher plastic strain and contact stress than the PCL stent. When deployed, the PCL stent had the largest contact area (4.3 mm2) and the lowest contact pressure (0.1 MPa) on the inner surface of the sinus canal. The results indicate that PCL could be a suitable choice for self-expanding sinus stents. This current study provides a method for observing the biomechanical characteristics of sinus stents during stent crimping and deployment.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Biomechanics Research Laboratory, Department of Medical Research, MacKay Memorial Hospital, Taiwan; Department of Medicine, MacKay Medical College, Taipei, Taiwan
| | - Lin-I Hsu
- Biomechanics Research Laboratory, Department of Medical Research, MacKay Memorial Hospital, Taiwan; Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Feng Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Pin Hsu
- High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ting-Kuo Chang
- Biomechanics Research Laboratory, Department of Medical Research, MacKay Memorial Hospital, Taiwan; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chih Cheng
- Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City, Taiwan
| | - Chang-Hung Huang
- Biomechanics Research Laboratory, Department of Medical Research, MacKay Memorial Hospital, Taiwan; Department of Medicine, MacKay Medical College, Taipei, Taiwan; Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Nie Y, Li C, Zhan H, Kou L, Gu Y. Effect of nonaffine displacement on the mechanical performance of degraded PCL and its graphene composites: an atomistic investigation. NANOSCALE 2022; 14:14082-14096. [PMID: 36056646 DOI: 10.1039/d2nr03084e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evaluating the mechanical properties of biodegradable implants can be challenging for in situ experiments and time-consuming for materials with a slow degradation rate, such as polycaprolactone (PCL). In this work, the effects of chain scission and water erosion on the mechanical properties of degraded PCL are investigated by molecular dynamics simulation. The decrease of the mechanical performance is correlated with the increase of the nonaffine displacement during the degradation. The nonaffine squared displacements (NSD) during the tensile deformation are calculated by subtracting the affine squared displacements from the mean squared displacements. After chain scission, short polymer chains increase the NSD of the system and weaken the modulus of the polymer matrix. The effect of the NSD is also observed in a water erosion model. When the bond break ratio is less than 5%, PCL still maintains a well-entangled network, which constrains the diffusion of the water molecules, resulting in a higher modulus of the erosion model than the chain scission model at a low degradation rate. The effect of NSD is also found in the PCL/graphene composites. For the degraded polymer chains, the diffusion of PCL is constrained by the graphene network, and such an effect increases during the degradation. As a result, the addition of graphene nanosheets slows down the decreasing trend of Young's modulus. Such findings can also explain the size effect of the graphene reinforcement on the mechanical properties of the polymer composites. This work provides atomistic insights into the mechanical property evolution during polymer degradation, revealing the possibility of tuning the mechanical performance by controlling the diffusion, which could be beneficial for the design and lifetime prediction of degradable implants.
Collapse
Affiliation(s)
- Yihan Nie
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.
| | - Chengkai Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia.
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
6
|
Translating Material Science into Bone Regenerative Medicine Applications: State-of-The Art Methods and Protocols. Int J Mol Sci 2022; 23:ijms23169493. [PMID: 36012749 PMCID: PMC9409266 DOI: 10.3390/ijms23169493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.
Collapse
|