1
|
Wei W, Xie Z, Yan J, Luo R, He J. Progress in research on induced sputum in asthma: a narrative review. J Asthma 2024:1-16. [PMID: 39290080 DOI: 10.1080/02770903.2024.2395383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To explore the clinical significance of induced sputum in asthma through a retrospective analysis of induced sputum in patients with asthma. DATA SOURCES The data and references cited in this article were obtained from PubMed, Sci-Hub, and Web of Science. STUDY SELECTION Observational studies with reliable data were selected. CONCLUSIONS The cytological count, -omics, and pathogen detection of induced sputum are helpful for the clinical diagnosis of asthma and in guiding medication choices.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Zhihao Xie
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Jun Yan
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Renrui Luo
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| |
Collapse
|
2
|
Terl M, Diamant Z, Kosturiak R, Jesenak M. Choosing the right biologic treatment for individual patients with severe asthma - Lessons learnt from Picasso. Respir Med 2024; 234:107766. [PMID: 39181277 DOI: 10.1016/j.rmed.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Severe asthma represents a true challenge for clinicians from two basic perspectives, i.e.: a rational assessment of the underlying endo/phenotype and the subsequent selection of the best fitted (personalized) and effective treatment. Even though asthma is a heterogeneous disease, in the majority of therapy-compliant patients, it is possible to achieve (almost) complete disease control or even remission through conventional and quite uniform step-based pharmacotherapy, even without phenotyping. However, the absence of deeper assessment of individual patients revealed its handicap to its fullest extent during the first years of the new millennium upon the launch of biological therapeutics for patients with the most severe forms of asthma. The introduction of differentially targeted biologics into clinical practice became a challenge in terms of understanding and recognizing the etiopathogenetic heterogeneity of the asthmatic inflammation, pheno/endotyping, and, consequently, to choose the right biologic for the right patient. The answers to the following three questions should lead to correct identification of the dominant pheno/endotype: Is it really (severe) asthma? Is it eosinophilic asthma? If eosinophilic, is it (predominantly) allergen-driven? The identification of the best achievable and relevant alliance between endotypes and phenotypes ("euphenotypes") should be based not only on the assessment of the actual clinical characteristics and laboratory biomarkers, but more importantly, on the evaluation of their development and changes over time. In the current paper, we present a pragmatic three-step approach to severe asthma diagnosis and management.
Collapse
Affiliation(s)
- Milan Terl
- Department of Pneumology and Phthisiology, University Hospital and Faculty of Medicine in Pilsen, Charles University Prague, Czech Republic
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; Dept Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Radovan Kosturiak
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic; Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| |
Collapse
|
3
|
Kim J, Lee SH, Zhang S, Bong SK, Kim AT, Lee H, Liu X, Kim SM, Kim SN. Anti-Allergic Inflammatory Effect of Agarum cribrosum and Its Phlorotannin Component, Trifuhalol A, against the Ovalbumin-Induced Allergic Asthma Model. Curr Issues Mol Biol 2023; 45:8882-8893. [PMID: 37998734 PMCID: PMC10669934 DOI: 10.3390/cimb45110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Asthma is a chronic inflammatory disease involving structural changes to the respiratory system and severe immune responses mediated by allergic cytokines and pro-inflammatory mediators. Agarum cribrosum (AC) is a kind of seaweed which contains a phlorotannin, trifuhalol A. To evaluate its anti-allergic inflammatory effect against asthma, an ovalbumin inhalation-induced mouse asthma model was used. Histologic observations proved that trifuhalol A is minimizing the lung and tracheal structure changes as well as the infiltration of eosinophils and mast cells against ovalbumin inhalation challenge. From the serum and bronchoalveolar lavage fluid, ovalbumin-specific IgE and Th2-specific cytokines, IL-4, -5, and -13, were reduced with trifuhalol A treatment. In addition, IL-1β, IL-6, and TNF-α concentrations in lung homogenate were also significantly reduced via trifuhalol A treatment. Taken together, trifuhalol A, isolated from AC, was able to protect lung and airways from Th2-specific cytokine release, and IgE mediated allergic inflammation as well as the attenuation of IL-1β, IL-6, and TNF-α in lung, which results in the suppression of eosinophils and the mast cells involved asthmatic pathology.
Collapse
Affiliation(s)
- Joonki Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Heon Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
| | - Siqi Zhang
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sim-Kyu Bong
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
| | - Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hara Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Department of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Xiaoyong Liu
- Haizhibao Deutschland GmbH, Heiliggeistgasse, 85354 Freising, Germany;
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (J.K.); (S.H.L.); (S.Z.); (S.-K.B.); (H.L.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Devanathadesikan Seshadri V, Abdel Aziz Ibrahim I, Han X, Ou L. Tilianin alleviates airway inflammation in ovalbumin-induced allergic asthma in mice through the regulation of Th2 cytokines and TGF–β1/Smad markers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:422-432. [PMID: 34763123 DOI: 10.1016/j.jaip.2021.10.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Severe asthma often remains uncontrolled despite effective treatments and evidence-based guidelines. A group of global experts in asthma and biologic medications from 9 countries considered the most relevant clinical variables to manage severe asthma in adult patients and guide treatment choice. The resulting recommendations address the investigation of biomarker levels (blood eosinophil count along with fractional concentration of exhaled nitric oxide [FeNO]), clinical features (oral corticosteroid [OCS] dependence, specific comorbid disease entities associated with severe type 2 asthma), and safety considerations. Current evidence suggests that biomarkers, including both blood or sputum eosinophil counts as well as FeNO, add prognostic and predictive value and should be measured in all patients with severe asthma. OCS use is an important factor in biologic selection, especially given the documented ability of some biologics to reduce OCS dependence. Comorbid diseases and relevant safety considerations to each biologic should also be considered. More data are needed to determine whether biomarker profiles identify patients suited to one biologic versus another as limited data support differential predictors of response. Further prospective head-to-head trials and post hoc analyses of clinical trial data are warranted. The authors believe that these recommendations have value as they offer expert opinion to assist health care providers in making difficult decisions regarding the quality of care in severe, type 2 asthma with biologic medications. They remain conditional and are based on limited data owing to a lack of head-to-head comparisons.
Collapse
|
6
|
Pedersen F, Trinkmann F, Abdo M, Kirsten AM, Rabe KF, Watz H, Baraldo S, Saetta M, Hohlfeld JM, Holz O. Influence of Cell Quality on Inflammatory Biomarkers in COPD Sputum Supernatant. Int J Chron Obstruct Pulmon Dis 2021; 16:487-493. [PMID: 33688174 PMCID: PMC7935341 DOI: 10.2147/copd.s284938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/07/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose We recently introduced a sputum cell quality score to rate how cell morphology, cellular debris and squamous cell contamination influence inflammatory cell identification during microscopic evaluation. However, sputum cell quality is generally not considered for the interpretation of sputum fluid phase biomarkers. Therefore, we compared the soluble protein concentrations between sputum samples with different cell quality. The impact of cell quality was compared to other factors potentially affecting soluble biomarker concentrations. Methods A comprehensive sputum dataset from 154 clinically stable COPD patients was used to analyse the differences and the variability of sputum supernatant concentrations for 23 proteins between low, medium, and high sputum cell quality samples. A model was developed and tested to compare the impact of different factors on sputum supernatant protein levels. Results Mean percentages of sputum macrophages, neutrophils, eosinophils, monocytes and lymphocytes showed no significant differences between low, medium and high cell quality levels. The mean percentage of squamous cells were lower, while total cell count/mL sputum and cell viability were significantly higher in sputum samples with higher cell quality. The concentrations of Interleukin-6, Interleukin-8 and Tumor Necrosis Factor Receptor 2 were significantly increased in sputum samples of higher cell quality. The variability of most protein concentrations declined with increasing cell quality levels. Sixteen proteins showed significantly negative correlations with the percentage of squamous cells. For 14 proteins we observed a positive correlation with cell number/mL sputum. Multiple regression analysis shows that generally less than 30% of the protein variability can be explained by the included factors. Conclusion Sputum cell quality has a significant impact on some soluble biomarker concentrations in sputum supernatant. Sputum samples with low sputum cell quality show a higher variability of fluid phase proteins in comparison to medium and high sputum cell quality levels.
Collapse
Affiliation(s)
- Frauke Pedersen
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany.,LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frederik Trinkmann
- Pneumology and Critical Care Medicine, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Mustafa Abdo
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Anne-Marie Kirsten
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Respiratory Diseases Clinic, University of Padova, Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Respiratory Diseases Clinic, University of Padova, Padova, Italy
| | - Jens M Hohlfeld
- Fraunhofer ITEM, Clinical Airway Research - Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School (MHH), Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Olaf Holz
- Fraunhofer ITEM, Clinical Airway Research - Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
7
|
Gracias DT, Sethi GS, Mehta AK, Miki H, Gupta RK, Yagita H, Croft M. Combination blockade of OX40L and CD30L inhibits allergen-driven memory T H2 cell reactivity and lung inflammation. J Allergy Clin Immunol 2020; 147:2316-2329. [PMID: 33160971 DOI: 10.1016/j.jaci.2020.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The selective reduction of memory TH2 cell responses could be key to affording tolerance and protection from the recurrence of damaging allergic pathology. OBJECTIVE We asked whether TNF family costimulatory molecules cooperated to promote accumulation and reactivity of effector memory CD4 T cells to inhaled complex allergen, and whether their neutralization could promote airway tolerance to subsequent reexposure to allergen. METHODS Mice were sensitized intraperitoneally or intranasally with house dust mite and challenged with intranasal allergen after memory had developed. We assessed whether single or combined blockade of OX40L/CD252 and CD30L/CD153 inhibited memory T cells from driving acute asthmatic lung inflammation and protected mice following exposure to allergen at a later time. RESULTS OX40- or CD30-deficient animals showed strong or partial protection against allergic airway inflammation; however, neutralizing either molecule alone during the secondary response to allergen had little effect on the frequency of effector memory CD4 T cells formed and acute lung inflammation. In contrast, a significant reduction in eosinophilic inflammation was observed when OX40L and CD30L were simultaneously neutralized, with dual blockade inhibiting effector memory TH2 cell expansion in the lungs, whereas formation of peripherally induced regulatory T cells remained intact. Moreover, dual blockade during the secondary response resulted in a tolerogenic state such that mice did not develop a normal tertiary memory TH2 cell and lung inflammatory response when challenged weeks later with allergen. CONCLUSION Memory T-cell responses to complex allergens are controlled by several TNF costimulatory interactions, and their combination targeting might represent a strategy to reduce the severity of inflammatory reactions following reexposure to allergen.
Collapse
Affiliation(s)
- Donald T Gracias
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Gurupreet S Sethi
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Amit K Mehta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
8
|
Xuan X, Sun Z, Yu C, Chen J, Chen M, Wang Q, Li L. Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma. Allergol Immunopathol (Madr) 2020; 48:441-449. [PMID: 32359824 DOI: 10.1016/j.aller.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study aimed to explore the underlying anti-asthma pharmacological mechanisms of conciliatory anti-allergic decoction (CAD) with a network pharmacology approach. METHODS Traditional Chinese medicine related databases were utilized to screen the active ingredients of CAD. Targets of CAD for asthma treatment were also identified based on related databases. The protein-protein interaction network, biological function and KEGG pathway enrichment analysis, and molecular docking of the targets were performed. Furthermore, an asthma mouse model experiment involving HE staining, AB-PAS staining, and ELISA was also performed to assess the anti-asthma effect of CAD. RESULTS There were 77 active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin, and 48 related targets for asthma treatment, mainly including TNF, IL4, IL5, IL10, IL13 and IFN-γ, were identified with ideal molecular docking binding scores by network pharmacology analysis. KEGG pathway analysis revealed that these targets were directly involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB, IL17, T cell receptor, TNF, JAK-STAT signaling pathways, etc.). Animal experiments also confirmed that CAD could attenuate inflammatory cell invasion, goblet cell hyperplasia and mucus secretion. The levels of the major targets TNF-α, IL4, IL5, and IL13 can also be regulated by CAD in an asthma mouse model. CONCLUSION The anti-asthma mechanism of CAD possibly stemmed from the active ingredients targeting asthma-related targets, which are involved in the asthma pathway and signaling pathways to exhibit therapeutic effects.
Collapse
Affiliation(s)
- Xiaobo Xuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Ziyan Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Chenhuan Yu
- Experimental Animal centre, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Mei Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Qili Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Lan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
9
|
Onyema OO, Guo Y, Hata A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Deciphering the role of eosinophils in solid organ transplantation. Am J Transplant 2020; 20:924-930. [PMID: 31647606 PMCID: PMC7842192 DOI: 10.1111/ajt.15660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Eosinophils are rare granulocytes that belong to the innate arm of the immune system. This cell population is traditionally defined as a destructive and cytotoxic mediator in asthma and helminth infection. Limited data in transplantation have suggested that eosinophils play a similar role in potentiating deleterious organ inflammation and immunologic rejection. Contrary to this long-held notion, recent data have uncovered the possibility that eosinophils play an alternative role in immune homeostasis, defense against a wide range of pathogens, as well as downregulation of deleterious inflammation. Specifically, translational data from small animal models of lung transplantation have demonstrated a critical role for eosinophils in the downregulation of alloimmunity. These findings shed new light on the unique immunologic features of the lung allograft and demonstrate that environmental polarization may alter the phenotype and function of leukocyte populations previously thought to be static in nature. In this review, we provide an update on eosinophils in the homeostasis of the lung as well as other solid organs.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Atsushi Hata
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander Sasha Krupnick
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Wang C, Tang J, Qian B, Zeng Z, Gao Y, Song JL. Rubusoside alleviates the ovalbumin-induced mice allergic asthma by modulating the NF-κB activation. J Food Biochem 2020; 44:e13187. [PMID: 32185800 DOI: 10.1111/jfbc.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
The anti-inflammatory and anti-asthmatic effects of rubusoside (Rbs) were investigated in the ovalbumin (OVA)-induced asthmatic mice, followed by effective attenuation of Rbs treatment on the airway hyperresponsiveness and reduction of inflammatory cells inside the bronchoalveolar lavage fluid (BALF). The mitigation of inflammatory infiltration as a result of Rbs treatment was histologically observed in these mice lungs. Rbs contributed to the decrease of inflammatory cytokines (TNF-α, IL-13, IL-6, IL-5, and IL-4) inside the BALF of mice with asthma. A decline of OVA-dependent IgE and IgG1 inside the serum was also noticed in these mice. Rbs was proved to enhance the mRNA level of Foxp3 inside the mice lung affected with asthma while decrease that of IL-17A, IL-23, and RORγt. NF-κB pathway activation elicited by OVA was suppressed by Rbs inside the pulmonary tissues. Rbs played significantly in the reduction of airway inflammation induced by OVA which with modulating NF-κB pathway activation. PRACTICAL APPLICATIONS: Simultaneous therapy with medicine and food is strategically significant for disease prevention and treatment in traditional Chinese medicine. Rbs is a diterpene glycoside isolated from Rubus suavissimus. The anti-inflammatory and anti-asthmatic mechanism dependent of Rbs need further study clinically. The goal of current investigation is to explore the anti-inflammatory as well as anti-asthmatic activity of Rbs in mouse models of OVA-induced experimental allergic asthma. Results of the present study are scientifically supportive for the use of Rbs as an adjunctive reagent for clinical treatment of allergic asthma.
Collapse
Affiliation(s)
- Chengqiang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Jia Tang
- Institution of Documentation of Chinese Traditional Medicine Research, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Zhen Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, P.R. China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
11
|
Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens 2020; 9:pathogens9020112. [PMID: 32054098 PMCID: PMC7167821 DOI: 10.3390/pathogens9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
Medications for asthma management consisting of inhaled corticosteroids act by controlling symptoms. However, some patients do not respond to steroid treatment due to immunological factors at the cytokine level. Chlamydia pneumoniae (C. pneumoniae) infection is strongly implicated in asthma pathogenesis, causing altered immune responses. We investigated the association of C. pneumoniae serostatus with the production of certain cytokines by peripheral blood mononuclear cells (PBMCs) of steroid-resistant and -sensitive asthmatic patients. Our most important findings are the following: In the case of C. pneumoniae seropositive patients we detected pronounced spontaneous interleukin (IL)-10 secretion and, in the case of steroid-resistant patients, IL-10 secretion was at a significantly higher level as compared with in-sensitive patients (p < 0.01). Furthermore, steroid-resistant seropositive patients produced a significantly higher level of IL-10 spontaneously and under antigen stimulation as compared with steroid-resistant seronegative individuals (p < 0.05). Concerning spontaneous TNF-α secretion by C. pneumoniae seropositive asthmatics, we observed that steroid-resistant patients produced significantly more of this cytokine than steroid-sensitive patients. In the steroid-resistant patients’ sera, a remarkably high MMP-9 concentration was associated with C. pneumoniae seronegativity. Our study revealed that the differences in the cytokine production in steroid-sensitive and -resistant asthmatic patients can be influenced by their C. pneumoniae serostatus.
Collapse
|
12
|
Ando K, Tanaka A, Sagara H. Comparative Efficacy and Safety of Dupilumab and Benralizumab in Patients with Inadequately Controlled Asthma: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030889. [PMID: 32019141 PMCID: PMC7037967 DOI: 10.3390/ijms21030889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
No head-to-head trials have compared the efficacy and safety between the licensed dosage and administration dosage of dupilumab and benralizumab for inadequately controlled asthma. We conducted an indirect treatment comparison to estimate differences in the efficacy and safety between dupilumab and benralizumab for inadequately controlled asthma using the Bayesian approach. The primary efficacy endpoint was annual exacerbation rate (AER). A subgroup analysis by blood eosinophil count was also performed. The primary safety endpoint was the incidence of any adverse events (AAEs). The results demonstrate that there was no significant difference in the AER between dupilumab and benralizumab in overall patients and the subgroup with the blood eosinophil count of <150. However, the AER was significantly lower in the dupilumab group than in the benralizumab group in the subgroup with a blood eosinophil count of ≥150 but <300, and ≥300 with the rate ratio and 95% credible interval of 0.51 (0.29–0.92) and 0.58 (0.39–0.84), respectively. There was no significant difference in the AAEs between the dupilumab and benralizumab groups. This indirect treatment comparison indicates that dupilumab is superior to benralizumab in patients with inadequately controlled asthma having higher blood eosinophil counts. A direct comparison is required to provide definitive evidence. Systematic Review Registration: UMIN-CTR no. UMIN000036256.
Collapse
|
13
|
Shang L, Wang L, Shi X, Wang N, Zhao L, Wang J, Liu C. HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma. Life Sci 2019; 241:117120. [PMID: 31825792 DOI: 10.1016/j.lfs.2019.117120] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 01/23/2023]
Abstract
AIMS The present study explored the function and regulatory mechanism of High mobility group box 1 (HMGB1) in asthma. MAIN METHODS OVA (ovalbumin)-induced asthmatic mice model and LPS-treated cellular model were established in this study. Airway inflammation was measured through detecting the expression of IL-4, IL-5, IL-13 and Interferon-γ (IFN-γ) in serum and BALF (bronchoalveolar lavage fluid) by ELISA kits. Bioinformatics predictive analysis, ChIP assays, Luciferase reporter assay and Western blotting were used to explore the relation between HMGB1 and HSF1 (Heat shock factor 1). KEY FINDINGS HMGB1 expression was increased in OVA-induced asthmatic mice. Silencing HMGB1 attenuated the increasing of IgE, inflammatory factors (IL-4, IL-5 and IL-13), and airway hyperresponsiveness that induced by OVA. In addition, our study found that HSF1 directly bind with the HMGB1 promoter and negatively regulation of HMGB1. HSF-1 were upregulated in OVA-induced asthmatic mice, and knockdown of HSF1 aggravated the OVA-induced airway inflammation and airway hyperreactivity in mice may through promoting the expression of HMGB1 and the activation of the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway. SIGNIFICANCE The expression of HMGB1 could be negatively regulated by HSF1, and the TLR4/MyD88/NF-κB signal pathway was involved in HSF1/HMGB1-mediated regulation of asthma.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital Xi'an, Shaanxi, 710068, PR China
| | - Li Wang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital Xi'an, Shaanxi, 710068, PR China
| | - Xiaolan Shi
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Ning Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Long Zhao
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Jing Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Cuicui Liu
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China.
| |
Collapse
|
14
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
15
|
Feng Y, Zheng C, Zhou Z, Xiong H, Feng F, Xie F, Wu ZD. IL-17A neutralizing antibody attenuates eosinophilic meningitis caused by Angiostrongylus cantonensis by involving IL-17RA/Traf6/NF-κB signaling. Exp Cell Res 2019; 384:111554. [DOI: 10.1016/j.yexcr.2019.111554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
|
16
|
Aerosol Inhalation-mediated Delivery of an Adeno-associated Virus 5-expressed Antagonistic Interleukin-4 Mutant Ameliorates Experimental Murine Asthma. Arch Med Res 2019; 50:384-392. [PMID: 31678897 DOI: 10.1016/j.arcmed.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND T helper 2 (Th2) lymphocytes and associated interleukin (IL) 4 and IL-13 play crucial roles in asthma pathogenesis. In this study, we explored an adeno-associated virus 5 (AAV5) based gene therapy by delivering truncated IL-4 protein to antagonize IL-4 receptor α chain and interrupt asthmatic signal pathway. RESULTS A recombinant adeno-associated virus 5 (AAV5) vector harboring a truncated mouse IL-4 gene (AAV5-mIL-4ΔC22) was prepared. Western blotting showed that the IL-4 mutant protein lacking the C-terminal 22 amino acids was expressed well in AAV5-mIL-4ΔC22 infected 16HBE and BEAS-2B cells. AAV5-drivn green fluorescent protein (AAV5-GFP) served as a control. The biodistribution of vector DNA after AAV5 vector aerosol inhalation was examined by PCR and the result showed that foreign DNA was detectable in the lungs but not in other organs including gonads. The aerosol inhalation-mediated delivery of AAV5-expressed antagonistic IL-4 mutant protein improved the lung function of ovalbumin-induced asthma mice. CONCLUSIONS The inhalation of aerosolized AAV5-mIL-4ΔC22 significantly improved the lung function and modulated the immune cell infiltration and associated cytokine expression in the bronchoalveolar lavage fluid (BALF) of ovalbumin-induced asthma mice.
Collapse
|
17
|
Jiang S, Wang Q, Wang Y, Song X, Zhang Y. Blockade of CCL2/CCR2 signaling pathway prevents inflammatory monocyte recruitment and attenuates OVA-Induced allergic asthma in mice. Immunol Lett 2019; 214:30-36. [PMID: 31454522 DOI: 10.1016/j.imlet.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
Recent studies have reported recruitment of inflammatory monocytes by cytokines including chemokine (C-C motif) ligand 2 (CCL2) are critical in allergic responses. We aimed to investigate the role of inflammatory monocytes and CCL2 in mouse model with ovalbumin (OVA)-induced allergic asthma. Mice were sensitized with OVA to induce allergic asthma. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) and peritoneal lavage fluid (PLF) were measured by flow cytometry. The expression of CCL2 and CCL2 receptor (CCR2) were determined by qPCR and western blot. The concentrations of Type 1 helper T (Th1) and Type 2 helper T (Th2) cytokines in PLF were detected by ELISA. Inflammatory monocytes are recruited in PLF, and expression of CCL2 and CCR2 were elevated in OVA-induced mice. In addition, transfer of CCR2 knockdown inflammatory monocytes decreased the levels of allergic asthma biomarkers. Injection of anti-CCL2 or anti-CCR2 antibody decreased the proportion of eosinophils and inflammatory monocytes in BALF. Blockade of CCL2/CCR2 signaling pathway suppressed the allergen-induced Th2 cytokines and enhanced the levels of Th1-associated cytokines. Blockade of CCL2/CCR2 signaling pathway in sensitization-recruited inflammatory monocytes exhibits protective effects in mouse model of OVA-induced allergic asthma by inhibiting the Th2 inflammatory responses.
Collapse
Affiliation(s)
- Shaohong Jiang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Qiang Wang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Yuxin Wang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China
| |
Collapse
|
18
|
Song JL, Qian B, Pan C, Lv F, Wang H, Gao Y, Zhou Y. Protective activity of mogroside V against ovalbumin-induced experimental allergic asthma in Kunming mice. J Food Biochem 2019; 43:e12973. [PMID: 31489660 DOI: 10.1111/jfbc.12973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
We investigated the antiasthmatic effect of mogroside V (Mog V) in mice with ovalbumin (OVA)-induced asthma. Administration of Mog V effectively attenuated OVA-induced airway hyperresponsiveness and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histological examination showed that Mog V reduced the inflammatory infiltration of the lungs in the asthmatic mice. ELISAs suggested that Mog V effectively decreased the levels of IL-4, IL-5, and IL-13 in BALF and serum levels of OVA-specific IgE and IgG1 in the asthmatic mice. A quantitative reverse-transcription PCR assay also indicated that Mog V decreased the mRNA levels of IL-17A, IL-23, and RORγt in the lungs of the asthmatic mice (the opposite effect on Foxp3 mRNA). Furthermore, Mog V significantly reduced the OVA-induced activation of NF-κB in the lungs. This study indicates that Mog V alleviates OVA-induced inflammation in airways, and this effect is associated with a reduction in NF-κB activation. PRACTICAL APPLICATIONS: A traditional Chinese medicine herb has been reported to have a strong curative effect on asthma in clinical practice. Siraitia grosvenorii is known in China as a functional food product with the ability to improve lung function. Mogroside V is a triterpene glycoside isolated from S. grosvenorii. Nonetheless, the antiasthmatic effect of mogroside V has not been evaluated yet. The aim of this study was to investigate the antiasthmatic activity of mogroside V in mice with chemically induced asthma. The data from this study will provide some scientific evidence supporting wider use of S. grosvenorii in functional foods.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland.,Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Cailing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Fangfang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Haipeng Wang
- Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, People's Republic of China
| | - Yanyuan Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
19
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
20
|
Santus P, Saad M, Damiani G, Patella V, Radovanovic D. Current and future targeted therapies for severe asthma: Managing treatment with biologics based on phenotypes and biomarkers. Pharmacol Res 2019; 146:104296. [PMID: 31173886 DOI: 10.1016/j.phrs.2019.104296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a respiratory disorder with considerable heterogeneity in aetiology, triggers, clinical characteristics and response to therapy. This diversity reflects different inflammatory pathways that can be subdivided into clinically similar categories called phenotypes, or pathogenically comparable groups called endotypes. In recent years, a great amount of research has been dedicated to the investigation and understanding of the heterogeneity of asthma pathophysiology and to the identification of treatable traits, biomarkers, mediators and therapeutic targets. Severe asthma is defined as an uncontrolled disease despite a maximal conventional therapeutic approach. While, to date, some target therapies showing improvements in lung function, asthma symptoms and a reduction of the annual rate of exacerbations in patients with severe asthma have been already approved, other treatments are currently being studied, specifically targeting Type 2 asthma. Further progress however, is still needed to tackle the molecular pathways for non-Type 2 asthma. The aim of the present narrative review is to discuss and examine the indication, mechanisms of action and therapeutic effects of currently available and emerging biologic agents for the treatment of severe asthma.
Collapse
Affiliation(s)
- Pierachille Santus
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Marina Saad
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161, Milan, Italy.
| | - Vincenzo Patella
- Allergology and Clinical Immunology Unit, Department of Medical Sciences, Battipaglia Hospital, Via Fiorignano, 1, 84091, Battipaglia, Salerno, Italy.
| | - Dejan Radovanovic
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
21
|
Huang H, Hong JY, Wu YJ, Wang EY, Liu ZQ, Cheng BH, Mei L, Liu ZG, Yang PC, Zheng PY. Vitamin D receptor interacts with NLRP3 to restrict the allergic response. Clin Exp Immunol 2018; 194:17-26. [PMID: 30260469 DOI: 10.1111/cei.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/20/2023] Open
Abstract
Vitamin D receptor (VDR) mediates various biochemical activities between the cytoplasm and the nucleus in the cell. The nucleotide-binding, oligomerization domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) protein is involved in the T helper type 2 (Th2) response. This study tests a hypothesis that VDR interacts with NLRP3 to restrict the Th2-biased response. In this study, VDR-/- mice and WT (WT) mice were used. Th2 cell differentiation between VDR-/- mice and WT mice was observed. We observed that CD4+ T cell activation was higher in VDR-/- mice. The VDR-/-CD4+ T cells were prone to Th2 polarization. VDR-/- mice produced more immunoglobulin (Ig)E. VDR bound NLRP3 to prevent Th2 differentiation by restricting IL4 gene transcription. Th2 biased inflammation spontaneously developed in the intestine of VDR-/- mice. In conclusion, VDR binds NLRP3 to restrict IL4 gene transcription and prevent biased Th2 polarization.
Collapse
Affiliation(s)
- H Huang
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| | - J-Y Hong
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - Y-J Wu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - E-Y Wang
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - Z-Q Liu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China.,Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - B-H Cheng
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - L Mei
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| | - Z-G Liu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - P-C Yang
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China.,The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - P-Y Zheng
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Mitamura Y, Nunomura S, Nanri Y, Arima K, Yoshihara T, Komiya K, Fukuda S, Takatori H, Nakajima H, Furue M, Izuhara K. Hierarchical control of interleukin 13 (IL-13) signals in lung fibroblasts by STAT6 and SOX11. J Biol Chem 2018; 293:14646-14658. [PMID: 30076218 DOI: 10.1074/jbc.ra117.001364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Interleukin (IL)-13 is a signature cytokine of type 2 inflammation important for the pathogenesis of various diseases, including allergic diseases. Signal transducer and activator of transcription (STAT) 6 is a critical transcriptional factor for the IL-13 signals; however, it remains unknown how expression of the IL-13-induced genes is differentiated by the transcriptional machineries. In this study, we identified IL-13-induced transcriptional factors in lung fibroblasts using DNA microarrays in which SOX11 was included. Knockdown of SOX11 down-regulated expression of periostin and CCL26, both of which are known to be downstream molecules of IL-13, whereas enforced expression of SOX11 together with IL-13 stimulation enhanced expression of periostin. Moreover, we found that in DNA microarrays combining IL-13 induction and SOX11 knockdown there exist both SOX11-dependent and -independent molecules in IL-13-inducible molecules. In the former, many inflammation-related and fibrosis-related molecules, including periostin and CCL26, are involved. These results suggest that SOX11 acts as a trans-acting transcriptional factor downstream of STAT6 and that in lung fibroblasts the IL-13 signals are hierarchically controlled by STAT6 and SOX11.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.,the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Nunomura
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Yasuhiro Nanri
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kazuhiko Arima
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Tomohito Yoshihara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kosaku Komiya
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.,the Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu 879-5593, Japan, and
| | - Shogo Fukuda
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Hiroaki Takatori
- the Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Hiroshi Nakajima
- the Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Masutaka Furue
- the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Izuhara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan,
| |
Collapse
|
23
|
Rainville JR, Tsyglakova M, Hodes GE. Deciphering sex differences in the immune system and depression. Front Neuroendocrinol 2018; 50:67-90. [PMID: 29288680 DOI: 10.1016/j.yfrne.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Certain mood disorders and autoimmune diseases are predominately female diseases but we do not know why. Here, we explore the relationship between depression and the immune system from a sex-based perspective. This review characterizes sex differences in the immune system in health and disease. We explore the contribution of gonadal and stress hormones to immune function at the cellular and molecular level in the brain and body. We propose hormonal and genetic sex specific immune mechanisms that may contribute to the etiology of mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Mariya Tsyglakova
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA.
| |
Collapse
|
24
|
Liu W, Min J, Jiang H, Mao B. Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists in asthma: a systematic review and meta-analysis protocol. BMJ Open 2018; 8:e020882. [PMID: 29678990 PMCID: PMC5914763 DOI: 10.1136/bmjopen-2017-020882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION More than 20 orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists have moved forward to clinical development in recent years for the treatment of asthma. However, evidence from individual randomised controlled trials (RCTs) has demonstrated inconsistent results in their efficacy and safety. METHODS AND ANALYSIS PubMed/Medline, Embase, Web of Science, Cochrane Database of Systematic Reviews, Global Index Medicus, Cochrane Central Register of Controlled Trials and Scopus will be searched from inception to 30 December 2017 for eligible RCTs, with additional studies being identified by manual searches. The study eligibility, data extraction and quality appraisal will be performed by two independent reviewers. Studies deemed fit for inclusion will be assessed using Cochrane Collaboration risk of bias tool. To generate more accurate analyses, Grading of Recommendations Assessment, Development and Evaluation will be used to grade the evidence. We will use the χ2 test and the I2 statistic to assess heterogeneity. The metaregression and subgroup analyses will be undertaken in the presence of heterogeneity. The potential for publication bias will be examined using funnel plots. ETHICS AND DISSEMINATION The current study is based on published data, thus ethical approval is not a requirement. The results of this study will be reported in an open-access peer-reviewed publication or will be disseminated as conference proceedings. This systematic review will increase the understanding of the application of CRTH2 antagonists in patients with asthma, which may help to establish and identify specific gaps in the evidence informing a future agenda for asthma research, policy and practice. TRIAL REGISTRATION NUMBER CRD42017079342.
Collapse
Affiliation(s)
- Wei Liu
- Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Min
- Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Jiang
- Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Huang C, Zhang Z, Wang L, Liu J, Gong X, Zhang C. ML-7 attenuates airway inflammation and remodeling via inhibiting the secretion of Th2 cytokines in mice model of asthma. Mol Med Rep 2018; 17:6293-6300. [PMID: 29512725 PMCID: PMC5928606 DOI: 10.3892/mmr.2018.8683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
Previous studies have indicated that smooth muscle myosin light chain kinase (MLCK) has a prominent role in the regulation of smooth muscle contraction, which tends to be upregulated in asthma. In recent years, numerous studies have reported that MLCK is intimately connected with the immunoregulatory mechanism of T cells. The imbalance of T helper type 1 cells (Th1)/Th2 constitutes the immune-associated pathological basis of chronic asthma. Th2-associated cytokines, including interleukin-4, −5, −13, −25 and −33, are involved in airway inflammation, hyperresponsiveness and remodeling, which leads to a progressive decline in lung function. The purpose of the present study was to verify whether inhibition of bronchial MLCK attenuated the expression Th2-associated cytokines in asthmatic mice, including the above-mentioned ones. Female BALB/c mice were used to establish an ovalbumin (OVA)-induced model of asthma, of which one group was treated with the MLCK inhibitor (5-iodonaphthalene-1-sulfonyl) homopiperazine (ML-7). The inhibitor of MLCK, ML-7 attenuated airway inflammation and remodeling by reducing inflammatory cell infiltration and the secretion of Th2 cytokines in mice model of asthma, which may represent a promising therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Zewen Zhang
- Department of Medical Imaging and Nuclear Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liuxin Wang
- Department of Respiratory Medicine, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Ju Liu
- Department of Medical Research Center, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xiaodan Gong
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Caiqing Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
26
|
Abstract
Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) binds to prostaglandin D2. CRTH2 is expressed on various cell types including eosinophils, mast cells, and basophils. CRTH2 and prostaglandin D2 are involved in allergic inflammation and eosinophil activation. Orally administered CRTH2 antagonists are in clinical development for the treatment of asthma. The biology and clinical trial data indicate that CRTH2 antagonists should be targeted toward eosinophilic asthma. This article reviews the clinical evidence for CRTH2 involvement in asthma pathophysiology and clinical trials of CRTH2 antagonists in asthma. CRTH2 antagonists could provide a practical alternative to biological treatments for patients with severe asthma. Future perspectives for this class of drug are considered, including the selection of the subgroup of patients most likely to show a meaningful treatment response.
Collapse
Affiliation(s)
- Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Arjun Ravi
- Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Thomas Southworth
- Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Nhu QM, Aceves SS. Tissue Remodeling in Chronic Eosinophilic Esophageal Inflammation: Parallels in Asthma and Therapeutic Perspectives. Front Med (Lausanne) 2017; 4:128. [PMID: 28831387 PMCID: PMC5549614 DOI: 10.3389/fmed.2017.00128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic eosinophilic inflammation is associated with tissue remodeling and fibrosis in a number of chronic T-helper 2 (Th2)-mediated diseases including eosinophilic esophagitis (EoE) and asthma. Chronic inflammation results in dysregulated tissue healing, leading to fibrosis and end organ dysfunction, manifesting clinically as irreversible airway obstruction in asthma and as esophageal rigidity, strictures, narrowing, dysmotility, dysphagia, and food impactions in EoE. Current therapies for EoE and asthma center on reducing inflammation-driven tissue remodeling and fibrosis with corticosteroids, coupled with symptomatic control and allergen avoidance. Additional control of Th2 inflammation can be achieved in select asthma patients with biologic therapies such as anti-IL-5 and anti-IL-13 antibodies, which have also been trialed in EoE. Recent molecular analysis suggests an emerging role for structural cell dysfunction, either inherited or acquired, in the pathogenesis and progression of EoE and asthma tissue remodeling. In addition, new data suggest that inflammation-independent end organ rigidity can alter structural cell function. Herein, we review emerging data and concepts for the pathogenesis of tissue remodeling and fibrosis primarily in EoE and relevant pathogenetic parallels in asthma, focusing additionally on emerging disease-specific therapies and the ability of these therapies to reduce tissue remodeling in subsets of patients.
Collapse
Affiliation(s)
- Quan M Nhu
- Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, Scripps Clinic - Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, Scripps Clinic-Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Seema S Aceves
- Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital - San Diego, San Diego, CA, United States
| |
Collapse
|