1
|
Patent highlights October–November 2021. Pharm Pat Anal 2022; 11:37-44. [DOI: 10.4155/ppa-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
2
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
3
|
Kraus AU, Penna-Martinez M, Shoghi F, Seidl C, Meyer G, Badenhoop K. HLA-DQB1 Position 57 Defines Susceptibility to Isolated and Polyglandular Autoimmunity in Adults: Interaction With Gender. J Clin Endocrinol Metab 2019; 104:1907-1916. [PMID: 30590628 DOI: 10.1210/jc.2018-01621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
CONTEXT Autoimmune endocrinopathies result from environmental triggers on the genetic background of risk alleles, especially HLA-DR and HLA-DQ with alanine (Ala) in HLA-DQB1 position 57 (Ala57), whereas amino acid Asp57 is protective. OBJECTIVES Differentiate the effects of HLA-DQB1 amino acid variants at position 57 in adult patients with isolated endocrinopathies and autoimmune polyglandular syndrome type 2 (APS-2) compared with healthy controls in relation to gender. SETTING University Hospital Frankfurt, Frankfurt, Germany. PARTICIPANTS Two hundred seventy-eight patients with APS-2 and 1373 patients with isolated endocrinopathies: [type 1 diabetes (T1D), n = 867], Addison disease (AD, n = 185), autoimmune thyroiditis (AIT, n = 321) and 526 healthy controls. RESULTS Homozygous HLA-DQB1 Ala57 was more frequent in polyglandular T1D/AIT (OR 11.7, Pc = 3 × 10-7) and AD/AIT (OR 4.0, Pc = 3 × 10-7), as well as in isolated T1D (OR 9.7, Pc = 3 × 10-7) and AD (OR 3.1, Pc = 3 × 10-7). Heterozygous HLA-DQB1 57 Ala/non-Ala was increased in women with isolated AD and polyglandular AD/AIT (both OR 1.7, Pc= 0.02) whereas the same amino acid variant was overrepresented in men with T1D compared with women (OR 1.6, Pc = 0.004). The amino acid Ala57 was more frequent (OR 2.0, Pc = 0.02) and the amino acid Asp57 was much more rare (OR 0.4, Pc = 0.007) in the APS-2 cohort T1D/AIT than in AD/AIT. CONCLUSION HLA-DQB1 confers strong susceptibility by Ala57 homozygosity and protection by non-Ala57, both in adult isolated and polyglandular diseases. Frequencies of HLA-DQB1 amino acids differentiate between APS-2 T1D/AIT and AD/AIT. HLA-DQB1 Ala57 heterozygous women are at increased risk for AD or AIT, whereas men were found to have an increased susceptibility for T1D.
Collapse
Affiliation(s)
- Anna U Kraus
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Frankfurt, Germany
| | - Marissa Penna-Martinez
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Frankfurt, Germany
| | - Firouzeh Shoghi
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Seidl
- Institute of Transfusion Medicine and Immunohematology, Department of Transplantation Immunology and Immunogenetics, University Hospital Frankfurt, Frankfurt, Germany
| | - Gesine Meyer
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Frankfurt, Germany
| | - Klaus Badenhoop
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Giorgio C, Incerti M, Pala D, Russo S, Chiodelli P, Rusnati M, Cantoni A, Di Lecce R, Barocelli E, Bertoni S, Ravassard P, Manenti F, Piemonti L, Ferlenghi F, Lodola A, Tognolini M. Inhibition of Eph/ephrin interaction with the small molecule UniPR500 improves glucose tolerance in healthy and insulin-resistant mice. Pharmacol Res 2019; 141:319-330. [DOI: 10.1016/j.phrs.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
|
6
|
An association study in PTPN22 suggests that is a risk factor to Takayasu's arteritis. Inflamm Res 2018; 68:195-201. [PMID: 30470857 DOI: 10.1007/s00011-018-1204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Takayasu's arteritis (TA) represents a rare autoimmune disease (AD) characterized by systemic vasculitis that primarily affects large arteries, especially the aorta and the aortic arch and its main branches. Genetic components in TA are largely unknown. PTPN22 is a susceptibility loci for different ADs; however, the role of different PTPN22 single-nucleotide polymorphisms (SNPs) in the susceptibility to TA is not clear. METHODS We evaluated the PTPN22 R620W (C1858T), R263Q (G788A), and - 123G/C SNPs in a group of patients with TA and in healthy individuals from Mexico. Our study included 111 patients with TA and 314 healthy individuals. Genotyping was performed with the 5' exonuclease (TaqMan®) assay. RESULTS Our data showed that the PTPN22 R620W polymorphism is a risk factor for TA (CC vs. CT: OR 4.3, p = 0.002, and C vs. T: OR 4.1, p = 0.003); however, the PTPN22 R263Q and - 1123G/C polymorphisms are not associated with this AD. In addition, the PTPN22 CGT haplotype, which carries the minor allele of the PTPN22 C1858T variant, was also associated with TA susceptibility. CONCLUSION This is the first report documenting an association between PTPN22 R620W and TA.
Collapse
|
7
|
Haider MZ, Rasoul MA, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs. PLoS One 2018; 13:e0198652. [PMID: 29924845 PMCID: PMC6010291 DOI: 10.1371/journal.pone.0198652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
The incidence of type-1 Diabetes Mellitus (T1DM) has increased steadily in Kuwait during recent years and it is now considered amongst the high-incidence countries. An interaction between susceptibility genes, immune system mediators and environmental factors predispose susceptible individuals to T1DM. We have determined the prevalence of protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene functional variant (C1858T; R620W, rs2476601), HLA-DQ and DR alleles and three autoantibodies in Kuwaiti children with T1DM to evaluate their impact on genetic predisposition of the disease. This study included 253 Kuwaiti children with T1DM and 214 ethnically matched controls. The genotypes of PTPN22 gene functional variant C1858T (R620W; rs2476601) were detected by PCR-RFLP method and confirmed by DNA sequencing. HLA-DQ and DR alleles were determined by sequence-specific PCR. Three autoantibodies were detected in the T1DM patients using radio-immunoassays. A significant association was detected between the variant genotype of the PTPN22 gene (C1858T, rs2476601) and T1DM in Kuwaiti Arabs. HLA-DQ2 and DQ8 alleles showed a strong association with T1DM. In T1DM patients which carried the variant TT-genotype of the PTPN22 gene, 93% had at least one DQ2 allele and 60% carried either a DQ2 or a DQ8 allele. Amongst the DR alleles, the DR3-DRB5, DR3-3, DR3-4 and DR4-4 showed a strong association with T1DM. Majority of T1DM patients who carried homozygous variant (TT) genotype of the PTPN22 gene had either DR3-DRB5 or DRB3-DRB4 genotypes. In T1DM patients who co-inherited the high risk HLA DQ, DR alleles with the variant genotype of PTPN22 gene, the majority were positive for three autoantibodies. Our data demonstrate that the variant T-allele of the PTPN22 gene along with HLA-DQ2 and DQ8 alleles constitute significant determinants of genetic predisposition of T1DM in Kuwaiti children.
Collapse
Affiliation(s)
- Mohammad Z. Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Majedah A. Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | | | - Gursev S. Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
8
|
Alswat KA, Nasr A, Al Dubayee MS, Talaat IM, Alsulaimani AA, Mohamed IAA, Allam G. The Potential Role of PTPN-22 C1858T Gene Polymorphism in the Pathogenesis of Type 1 Diabetes in Saudi Population. Immunol Invest 2018; 47:521-533. [PMID: 29611765 DOI: 10.1080/08820139.2018.1458109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent investigations have reported an association between protein tyrosine phosphatase non-receptor type-22 (PTPN-22) gene polymorphism and susceptibility to the development of type 1 diabetes (T1D) in some populations and not in others. In this study, we aimed to investigate the association of PTPN-22 C1858T polymorphism with T1D in Saudi children. METHODS A cohort of 372 type 1 diabetic children and 372 diabetes-free subjects was enrolled in the current investigation. The PTPN-22 C1858T polymorphism was identified using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS Our data showed that the frequency of CT and TT genotypes of PTPN-22 C1858T was higher in T1D children (17.7% and 4.3%, respectively) compared to healthy controls (4.8% and 1.6%, respectively), and both genotypes were statistically associated with T1D patients (OR = 4.4, 95% CI: 2.55-7.58, p < 0.001; and OR = 3.2, 95% CI: 1.23-8.28, p = 0.017, respectively). Moreover, the 1858T allele was significantly associated with T1D patients compared to the C allele (OR = 3.2, 95% CI: 1.59-6.88, p < 0.001). In addition, the T allele was significantly associated with elevated levels of HbA1c, anti-GAD, and anti-insulin antibodies (p < 0.001) and a lower concentration of C-peptide (p < 0.001) in T1D children. CONCLUSION The data presented here suggests that the T allele of PTPN-22 C1858T polymorphism might be a risk factor for T1D development in Saudi children.
Collapse
Affiliation(s)
- Khaled A Alswat
- a Department of Internal Medicine , College of Medicine, Taif University , Taif , Saudi Arabia.,b Diabetic Center , Prince Mansour Military Community Hospital , Taif , Saudi Arabia
| | - Amre Nasr
- c King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia.,d King Abdullah International Medical Research Center KAIMRC , Riyadh , Saudi Arabia
| | - Mohammed S Al Dubayee
- c King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia.,d King Abdullah International Medical Research Center KAIMRC , Riyadh , Saudi Arabia.,e King Abdulaziz Medical City , Saudi Arabia
| | - Iman M Talaat
- f Department of Pediatrics, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Adnan A Alsulaimani
- b Diabetic Center , Prince Mansour Military Community Hospital , Taif , Saudi Arabia.,g Department of Pediatrics , College of Medicine, Taif University , Taif , Saudi Arabia
| | - Imad A A Mohamed
- h Department of Microbiology, Faculty of Veterinary Medicine , Zagazig University , Sharkia , Egypt.,i Department of Microbiology and Immunology , College of Medicine, Taif University , Taif , Saudi Arabia
| | - Gamal Allam
- i Department of Microbiology and Immunology , College of Medicine, Taif University , Taif , Saudi Arabia.,j Immunology Section, Department of Zoology, Faculty of Science , Beni-Suef University , Beni-Suef , Egypt
| |
Collapse
|