1
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
van Erp JHJ, Kuperus JS, Bekkers JEJ, Kruyt MC. Bilateral Slipped Capital Femoral Epiphysis in a Young Girl Treated With Chemotherapy: A Case Report. JBJS Case Connect 2024; 14:01709767-202406000-00003. [PMID: 38579020 DOI: 10.2106/jbjs.cc.23.00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
CASE A 1-year-old girl was treated with chemotherapy and hematopoietic stem cell transplantation because of CD40 ligand deficiency. Four years later, she presented with pain in her right leg, diagnosed as atypical acute slipped capital femoral epiphysis, without a clear cause, besides chemotherapy possibly. She was treated with fixation of the epiphysis with a cannulated screw. Two years later, the same diagnosis was made for the left hip and the same surgery was applied. After the 2-year follow-up, clinical outcomes were good. CONCLUSION Chemotherapy may be a risk factor for atypical slipped capital femoral epiphysis, even without the combination with radiotherapy.
Collapse
Affiliation(s)
- J H J van Erp
- Clinical Orthopedic Research Center-mN, Zeist, The Netherlands
- Department of Orthopedics, Diakonessenhuis Utrecht, The Netherlands
- Department of Orthopedics, UMC Utrecht, The Netherlands
| | - J S Kuperus
- Department of Orthopedics, UMC Utrecht, The Netherlands
| | - J E J Bekkers
- Clinical Orthopedic Research Center-mN, Zeist, The Netherlands
- Department of Orthopedics, Diakonessenhuis Utrecht, The Netherlands
- Department of Orthopedics, UMC Utrecht, The Netherlands
| | - M C Kruyt
- Department of Orthopedics, UMC Utrecht, The Netherlands
| |
Collapse
|
3
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
4
|
Banday AZ, Nisar R, Patra PK, Kaur A, Sadanand R, Chaudhry C, Bukhari STA, Banday SZ, Bhattarai D, Notarangelo LD. Clinical and Immunological Features, Genetic Variants, and Outcomes of Patients with CD40 Deficiency. J Clin Immunol 2023; 44:17. [PMID: 38129705 PMCID: PMC11252661 DOI: 10.1007/s10875-023-01633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Inherited deficiencies of CD40 and CD40 ligand (CD40L) reflect the crucial immunological functions of CD40-CD40L interaction/signaling. Although numerous studies have provided a detailed description of CD40L deficiency, reports of CD40 deficiency are scarce. Herein, we describe the characteristics of all reported patients with CD40 deficiency. METHODS The PubMed, Embase and Web of Science databases were searched for relevant literature published till 7th August 2023. Study deduplication and identification of relevant reports was performed using the online PICO Portal. The data were extracted using a pre-designed data extraction form and the SPSS software was used for analysis. RESULTS Systematic literature review revealed 40 unique patients with CD40 deficiency. Respiratory tract and gastrointestinal infections were the predominant clinical manifestations (observed in 93% and 57% patients, respectively). Sclerosing cholangitis has been reported in nearly one-third of patients. Cryptosporidium sp. (29%) and Pneumocystis jirovecii (21%) were the most common microbes identified. Very low to undetectable IgG levels and severely reduced/absent switch memory B cells were observed in all patients tested/reported. Elevated IgM levels were observed in 69% patients. Overall, splice-site and missense variants were the most common (36% and 32%, respectively) molecular defects identified. All patients were managed with immunoglobulin replacement therapy and antimicrobial prophylaxis was utilized in a subset. Hematopoietic stem cell transplantation (HSCT) has been performed in 45% patients (curative outcome observed in 73% of these patients). Overall, a fatal outcome was reported in 21% patients. CONCLUSIONS We provide a comprehensive description of all important aspects of CD40 deficiency. HSCT is a promising curative treatment option for CD40 deficiency.
Collapse
Affiliation(s)
- Aaqib Zaffar Banday
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
- Clinical Immunology & Rheumatology Division, Department of Pediatrics, Khyber Medical Institute, Srinagar, India
- Rheumatology Division, Kashmir Clinics Group, Srinagar, India
| | - Rahila Nisar
- Department of Microbiology, Government Medical College (GMC), Baramulla, India
| | - Pratap Kumar Patra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Patna, 801507, India.
| | - Anit Kaur
- Department of Translational & Regenerative Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rohit Sadanand
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Chakshu Chaudhry
- Suma Genomics, Manipal, India
- Department of Pediatrics, Maharishi Markandeshwar College of Medical Sciences and Research, Ambala, India
| | | | - Saquib Zaffar Banday
- Department of Medical-Hematoncology and Stem Cell Transplant, Paras Hospital, Srinagar, India
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Pazhanisamy A, Jorge SD, Zimmermann MT, Kitcharoensakkul M, Abdalgani M, Khojah A, Victor C, Rueda C, Urrutia R, Abraham RS. Advanced computational analysis of CD40LG variants in atypical X-linked hyper-IgM syndrome. Clin Immunol 2023; 253:109692. [PMID: 37433422 DOI: 10.1016/j.clim.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
X-Linked Hyper-IgM Syndrome is caused by pathogenic variants in CD40LG. Three patients with atypical clinical and immunological features were identified with variants in CD40LG requiring further characterization. Flow cytometry was used to evaluate CD40L protein expression and binding capacity to a surrogate receptor, CD40-muIg. Though functional anomalies were observed, there was still a lack of clarity regarding the underlying mechanism. We developed structural models for wild-type and the three variants of CD40L protein observed in these patients (p. Lys143Asn, Leu225Ser and Met36Arg) to evaluate structural alterations by molecular mechanic calculations, and assess protein movement by molecular dynamic simulations. These studies demonstrate that functional analysis of variants of unknown significance in CD40LG can be supplemented by advanced computational analysis in atypical clinical contexts. These studies in combination identify the deleterious effects of these variants and potential mechanisms for protein dysfunction.
Collapse
Affiliation(s)
- Amudha Pazhanisamy
- Department of Pediatrics, Nationwide Children's Hospital, OH, USA; The Ohio State University Wexner Medical Center, OH, USA
| | | | | | - Maleewan Kitcharoensakkul
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, MO, USA
| | | | - Amer Khojah
- Department of Pediatrics, Umm Al-Qura University, Saudi Arabia
| | - Christian Victor
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, OH, USA
| | - Cesar Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, OH, USA
| | | | - Roshini S Abraham
- The Ohio State University Wexner Medical Center, OH, USA; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, OH, USA.
| |
Collapse
|
6
|
Matsumoto R, Gray J, Rybkina K, Oppenheimer H, Levy L, Friedman LM, Khamaisi M, Meng W, Rosenfeld AM, Guyer RS, Bradley MC, Chen D, Atkinson MA, Brusko TM, Brusko M, Connors TJ, Luning Prak ET, Hershberg U, Sims PA, Hertz T, Farber DL. Induction of bronchus-associated lymphoid tissue is an early life adaptation for promoting human B cell immunity. Nat Immunol 2023; 24:1370-1381. [PMID: 37460638 PMCID: PMC10529876 DOI: 10.1038/s41590-023-01557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.
Collapse
Affiliation(s)
- Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanna Oppenheimer
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | - Lior Levy
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | - Lilach M Friedman
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
| | | | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca S Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marissa C Bradley
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of Negev, Be'er-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Donna L Farber
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Mohanty MC, Desai M, Mohammad A, Aggarwal A, Govindaraj G, Bhattad S, Lashkari HP, Rajasekhar L, Verma H, Kumar A, Sawant U, Varose SY, Taur P, Yadav RM, Tatkare M, Fernandes M, Bargir U, Majumdar S, Edavazhippurath A, Rangarajan J, Manthri R, Madkaikar MR. Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR-WHO Collaborative Study Phase-I. Vaccines (Basel) 2023; 11:1211. [PMID: 37515027 PMCID: PMC10383878 DOI: 10.3390/vaccines11071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of vaccine-derived polioviruses (VDPVs) in patients with Primary Immunodeficiency (PID) is a threat to the polio-eradication program. In a first of its kind pilot study for successful screening and identification of VDPV excretion among patients with PID in India, enteroviruses were assessed in stool specimens of 154 PID patients across India in a period of two years. A total of 21.42% of patients were tested positive for enteroviruses, 2.59% tested positive for polioviruses (PV), whereas 18.83% of patients were positive for non-polio enteroviruses (NPEV). A male child of 3 years and 6 months of age diagnosed with Hyper IgM syndrome was detected positive for type1 VDPV (iVDPV1) with 1.6% nucleotide divergence from the parent Sabin strain. E21 (19.4%), E14 (9%), E11 (9%), E16 (7.5%), and CVA2 (7.5%) were the five most frequently observed NPEV types in PID patients. Patients with combined immunodeficiency were at a higher risk for enterovirus infection as compared to antibody deficiency. The high susceptibility of PID patients to enterovirus infection emphasizes the need for enhanced surveillance of these patients until the use of OPV is stopped. The expansion of PID surveillance and integration with a national program will facilitate early detection and follow-up of iVDPV excretion to mitigate the risk for iVDPV spread.
Collapse
Affiliation(s)
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Ahmad Mohammad
- World Health Organization, Country Office, New Delhi 110011, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Geeta Govindaraj
- Department of Pediatrics, Government Medical College, Kozhikode 673008, India
| | - Sagar Bhattad
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | | | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | - Harish Verma
- World Health Organization, CH-1211 Geneva, Switzerland
| | - Arun Kumar
- World Health Organization, Country Office, New Delhi 110011, India
| | - Unnati Sawant
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | | | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Reetika Malik Yadav
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Manogat Tatkare
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Mevis Fernandes
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Umair Bargir
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Sanjukta Majumdar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | - Jyoti Rangarajan
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | - Ramesh Manthri
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | | |
Collapse
|
8
|
Coronado-Hernández KG, Campos-Téllez HH, Cortés-Grimaldo RM, Macías-Robles AP, Estrada-García CD, Barrios-Díaz B, Ramírez Nepomuceno A, Barreto-Alcalá M, Esparza-Amaya D, Carvajal-Alonso HL, Berrón-Ruiz L. [Hyper-IgM syndrome with early liver involvement]. REVISTA ALERGIA MÉXICO 2023; 69:214-219. [PMID: 37218048 DOI: 10.29262/ram.v69i4.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023] Open
Abstract
INTRODUCTION Hyper-IgM syndrome is an innate error of immunity in which there is a defect in change of isotype of immunoglobulins, with decreased values of IgG, IgA, and IgE, but normal or increased level of IgM. This predisposes to infectious processes at the respiratory and gastrointestinal levels, as well as autoimmune diseases and neoplasm. CASE REPORT A 5 year 7-month-old boy with a history of 2 pneumonias, one of them severe, and chronic diarrhea since he was 2 years old. Persistent moderate neutropenia decreased IgG and elevated IgM. Cytometry flow confirmed absence of CD40L. Clinical evolution with early hepatic involvement. DISCUSSION Hyper-IgM syndrome predisposes to liver damage, so a complete evaluation is required as well as early diagnosis. Active anti-infective treatment and control of the inflammatory response are key to the treatment of liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hilda Lilian Carvajal-Alonso
- Jefa del servicio de Alergia e Inmunología Clínica Pediátrica. Unidad Médica de Alta Especialidad, Hospital de Pediatría, servicio de Alergia e Inmunología Clínica Pediátrica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco
| | - Laura Berrón-Ruiz
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México
| |
Collapse
|
9
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
10
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
11
|
Gong X, He Y, Lu G, Zhang Y, Qiu Y, Qiao L, Li Y. Exome sequencing contributes to identify comorbidities in a rare case of infant ARDS induced by the CD40LG mutation. BMC Med Genomics 2022; 15:153. [PMID: 35804376 PMCID: PMC9264746 DOI: 10.1186/s12920-022-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) causes significant mortality in young children with certain diseases. Early diagnosis and treatment can reduce infant mortality. Here, we report a rare case of exome sequencing in the early diagnosis of immunodeficiency in an infant. Case presentation A four-month-old full-term male infant presented with severe shortness of breath, hypoxemia, and unexplained parenchymal lung lesions. A series of examinations were performed to search for potential culprit viruses but negative results were obtained with the only exception being the rhinovirus that tested positive. The child’s family history revealed he had a brother who died of severe infection at the age of two years. We performed an exome sequencing analysis and a mutation analysis of CD40LG to obtain genetic data on the patient. Besides, we used flow cytometry to measure the CD40LG expression levels of activated T cells. A retrospective review of all the CD40LG mutant-induced X-linked hyper IgM syndromes (XHIGM) had been conducted to assess the differences between clinical and genetic molecular features. Finally, a regular intravenous immunoglobulin (IVIG) regimen led to steady breathing, the correction of hypoxemia, and a progressive improvement of lung CT scans. During follow-up, the patient received an IVIG regimen and his CT images improved. Moreover, his parents took advantage of pre-implantation genetic testing with in vitro fertilization to have a healthy twin offspring who did not carry such a mutation according to the early exome sequencing for the proband. Compared with other CD40LG mutant cases in our center, this proband displayed a normal plasma immunoglobulin level and he should be the youngest infant to have a molecular diagnosis of XHIGM. Conclusion Usually, XHIGM would not be suspected with a normal plasma immunoglobulin concentration. However, as we could not identify a potential comorbidity or risk factor, exome sequencing helps target this patient's real facts. Thus, this case report calls for exome sequencing to be performed in the case of unexplained infections when immunodeficiency is suspected after general immunological tests, especially for cases with a contributive family history among infants as the maternal transfused immunoglobulin might mask immune deficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01303-y.
Collapse
Affiliation(s)
- Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yunru He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yu Qiu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Gonzalez C. Pediatric immune deficiencies: current treatment approaches. Curr Opin Pediatr 2022; 34:61-70. [PMID: 34907131 DOI: 10.1097/mop.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To summarize the currently available definitive therapies for patients with inborn errors of immunity (IEIs) with a strong focus on recent advances in allogeneic hematopoietic cell transplantation (HCT) and gene therapy, including the use of alternative donors, graft manipulation techniques, less toxic approaches for pretransplant conditioning and gene transfer using autologous hematopoietic stem cells. RECENT FINDINGS In the absence of a matched sibling or a matched related donor, therapeutic alternatives for patients with IEIs include alternative donor transplantation or autologous gene therapy, which is only available for selected IEIs. In recent years, several groups have published their experience with haploidentical hematopoietic cell transplantation (HHCT) using different T-cell depletion strategies. Overall survival and event free survival results, although variable among centers, are encouraging. Preliminary results from autologous gene therapy trials with safer vectors and low-dose busulfan conditioning have shown reproducible and successful results. Both strategies have become valid therapeutic options for patients with IEIs. A new promising and less toxic conditioning regimen strategy is also discussed. SUMMARY Definitive therapies for IEIs with HCT and gene therapy are in stage of evolution, not only to refine their efficacy and safety but also their reach to a larger number of patients.
Collapse
Affiliation(s)
- Corina Gonzalez
- Immune Deficiency Cellular Therapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
França TT, Barreiros LA, Salgado RC, Napoleão SMDS, Gomes LN, Ferreira JFS, Prando C, Weber CW, Di Gesu RSW, Montenegro C, Aranda CS, Kuntze G, Staines-Boone AT, Venegas-Montoya E, Becerra JCA, Bezrodnik L, Di Giovanni D, Moreira I, Seminario GA, Raccio ACG, Dorna MDB, Rosário-Filho NA, Chong-Neto HJ, de Carvalho E, Grotta MB, Orellana JC, Dominguez MG, Porras O, Sasia L, Salvucci K, Garip E, Leite LFB, Forte WCN, Pinto-Mariz F, Goudouris E, Nuñez MEN, Schelotto M, Ruiz LB, Liberatore DI, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 Ligand Deficiency in Latin America: Clinical, Immunological, and Genetic Characteristics. J Clin Immunol 2022; 42:514-526. [PMID: 34982304 DOI: 10.1007/s10875-021-01182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CD40 ligand (CD40L) deficiency is a rare inborn error of immunity presenting with heterogeneous clinical manifestations. While a detailed characterization of patients affected by CD40L deficiency is essential to an accurate diagnosis and management, information about this disorder in Latin American patients is limited. We retrospectively analyzed data from 50 patients collected by the Latin American Society for Immunodeficiencies registry or provided by affiliated physicians to characterize the clinical, laboratory, and molecular features of Latin American patients with CD40L deficiency. The median age at disease onset and diagnosis was 7 months and 17 months, respectively, with a median diagnosis delay of 1 year. Forty-seven patients were genetically characterized revealing 6 novel mutations in the CD40LG gene. Pneumonia was the most common first symptom reported (66%). Initial immunoglobulin levels were variable among patients. Pneumonia (86%), upper respiratory tract infections (70%), neutropenia (70%), and gastrointestinal manifestations (60%) were the most prevalent clinical symptoms throughout life. Thirty-five infectious agents were reported, five of which were not previously described in CD40L deficient patients, representing the largest number of pathogens reported to date in a cohort of CD40L deficient patients. The characterization of the largest cohort of Latin American patients with CD40L deficiency adds novel insights to the recognition of this disorder, helping to fulfill unmet needs and gaps in the diagnosis and management of patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Lucila Akune Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lillian Nunes Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Prando
- Hospital Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | - Carolina Sanchez Aranda
- Serviço de Alergia e Imunologia, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil.,Jeffrey Modell Center São Paulo, São Paulo, Brazil
| | | | - Aidé Tamara Staines-Boone
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Edna Venegas-Montoya
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | | | - Liliana Bezrodnik
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Daniela Di Giovanni
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Ileana Moreira
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | | | - Mayra de Barros Dorna
- Divisão de Alergia e Imunologia, Departamento de Pediatria, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Elisa de Carvalho
- Gastroenterology and Hepatology Clínic, Brasilia Childrens Hospital, Brasília, Brazil
| | | | - Julio Cesar Orellana
- Division Alergia e Imunologia Clinica, Hospital de Niños de La Santísima Trinidad, Córdoba, Argentina
| | | | - Oscar Porras
- Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, San José, Costa Rica
| | - Laura Sasia
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | | | - Emilio Garip
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | - Luiz Fernando Bacarini Leite
- Department of Pediatrics, Immunodeficiency Sector, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | | | - Fernanda Pinto-Mariz
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ekaterini Goudouris
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María Enriqueta Nuñez Nuñez
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara, México
| | | | - Laura Berrón Ruiz
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad del México, México
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Jeffrey Modell Center São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Li Z, Sun C, Wang F, Wang X, Zhu J, Luo L, Ding X, Zhang Y, Ding P, Wang H, Pu M, Li Y, Wang S, Qin Q, Wei Y, Sun J, Wang X, Luo Y, Chen D, Qiu W. Molecular mechanisms governing circulating immune cell heterogeneity across different species revealed by single-cell sequencing. Clin Transl Med 2022; 12:e689. [PMID: 35092700 PMCID: PMC8800483 DOI: 10.1002/ctm2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. METHODS In this study, we compared the single-cell transcriptomes of immune cells from 12 species. Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. RESULTS Our data revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. CONCLUSIONS This study is the first to provide a comprehensive analysis of the cross-species single-cell transcriptome atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.
Collapse
Affiliation(s)
- Zhibin Li
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chengcheng Sun
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Wang
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
| | - Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiacheng Zhu
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Lihua Luo
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiangning Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanan Zhang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Peiwen Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Haoyu Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Shiyou Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yonglun Luo
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | | | - Wei Qiu
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
15
|
Kuehn HS, Chang J, Yamashita M, Niemela JE, Zou C, Okuyama K, Harada J, Stoddard JL, Nunes-Santos CJ, Boast B, Baxter RM, Hsieh EW, Garofalo M, Fleisher TA, Morio T, Taniuchi I, Dutmer CM, Rosenzweig SD. T and B cell abnormalities, pneumocystis pneumonia, and chronic lymphocytic leukemia associated with an AIOLOS defect in patients. J Exp Med 2021; 218:e20211118. [PMID: 34694366 PMCID: PMC8548914 DOI: 10.1084/jem.20211118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
AIOLOS/IKZF3 is a member of the IKAROS family of transcription factors. IKAROS/IKZF1 mutations have been previously associated with different forms of primary immunodeficiency. Here we describe a novel combined immunodeficiency due to an IKZF3 mutation in a family presenting with T and B cell involvement, Pneumocystis jirovecii pneumonia, and/or chronic lymphocytic leukemia. Patients carrying the AIOLOS p.N160S heterozygous variant displayed impaired humoral responses, abnormal B cell development (high percentage of CD21low B cells and negative CD23 expression), and abrogated CD40 responses. Naive T cells were increased, T cell differentiation was abnormal, and CD40L expression was dysregulated. In vitro studies demonstrated that the mutant protein failed DNA binding and pericentromeric targeting. The mutant was fully penetrant and had a dominant-negative effect over WT AIOLOS but not WT IKAROS. The human immunophenotype was recapitulated in a murine model carrying the corresponding human mutation. As demonstrated here, AIOLOS plays a key role in T and B cell development in humans, and the particular gene variant described is strongly associated with immunodeficiency and likely malignancy.
Collapse
MESH Headings
- Adult
- Animals
- B-Lymphocytes/pathology
- Child
- Female
- Humans
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Mutation
- Pneumonia, Pneumocystis/blood
- Pneumonia, Pneumocystis/genetics
- T-Lymphocytes/pathology
- Exome Sequencing
- Mice
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jingjie Chang
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Chengcheng Zou
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Junji Harada
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jennifer L. Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Cristiane J. Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Mary Garofalo
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Cullen M. Dutmer
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Primary antibody deficiencies in Turkey: molecular and clinical aspects. Immunol Res 2021; 70:44-55. [PMID: 34618307 DOI: 10.1007/s12026-021-09242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Primary antibody deficiencies (PAD) are the most common subtype of primary immunodeficiencies, characterized by increased susceptibility to infections and autoimmunity, allergy, or malignancy predisposition. PAD syndromes comprise of immune system genes highlighted the key role of B cell activation, proliferation, migration, somatic hypermutation, or isotype switching have a wide spectrum from agammaglobulinemia to selective Ig deficiency. In this study, we describe the molecular and the clinical aspects of fifty-two PAD patients. The most common symptoms of our cohort were upper and lower respiratory infections, bronchiectasis, diarrhea, and recurrent fever. Almost all patients (98%) had at least one of the symptoms like autoimmunity, lymphoproliferation, allergy, or gastrointestinal disease. A custom-made next-generation sequencing (NGS) panel, which contains 24 genes, was designed to identify well-known disease-causing variants in our cohort. We identified eight variants (15.4%) among 52 PAD patients. The variants mapped to BTK (n = 4), CD40L (n = 1), ICOS (n = 1), IGHM (n = 1), and TCF3 (n = 1) genes. Three novel variants were described in the BTK (p.G414W), ICOS (p.G60*), and IGHM (p.S19*) genes. We performed Sanger sequencing to validate pathogenic variants and check for allelic segregation in the family. Targeted NGS panel sequencing can be beneficial as a suitable diagnostic modality for diagnosing well-known monogenic PAD diseases (only 2-10% of PADs); however, screening only the coding regions of the genome may not be adequately powered to solve the pathogenesis of PAD in all cases. Deciphering the regulatory regions of the genome and better understanding the epigenetic modifications will elucidate the molecular basis of complex PADs.
Collapse
|
17
|
Romani L, Williamson PR, Di Cesare S, Di Matteo G, De Luca M, Carsetti R, Figà-Talamanca L, Cancrini C, Rossi P, Finocchi A. Cryptococcal Meningitis and Post-Infectious Inflammatory Response Syndrome in a Patient With X-Linked Hyper IgM Syndrome: A Case Report and Review of the Literature. Front Immunol 2021; 12:708837. [PMID: 34335625 PMCID: PMC8320724 DOI: 10.3389/fimmu.2021.708837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The hyper IgM syndromes are a rare group of primary immunodeficiency. The X-linked Hyper IgM syndrome (HIGM), due to a gene defect in CD40L, is the commonest variant; it is characterized by an increased susceptibility to a narrow spectrum of opportunistic infection. A few cases of HIGM patients with Cryptococcal meningoencephalitis (CM) have been described in the literature. Herein we report the case of a young male diagnosed in infancy with HIGM who developed CM complicated by a post-infectious inflammatory response syndrome (PIIRS), despite regular immunoglobulin replacement therapy and appropriate antimicrobial prophylaxis. The patient was admitted because of a headache and CM was diagnosed through detection of Cryptococcus neoformans in the cerebrospinal fluid. Despite the antifungal therapy resulting to negative CSF culture, the patient exhibited persistent headaches and developed diplopia. An analysis of inflammatory cytokines on CSF, as well as the brain MRI, suggested a diagnosis of PIIRS. Therefore, a prolonged corticosteroids therapy was started obtaining a complete resolution of symptoms without any relapse.
Collapse
Affiliation(s)
- Lorenza Romani
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Peter Richard Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maia De Luca
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Phan ANL, Pham TTT, Phan XT, Huynh N, Nguyen TM, Cao CTT, Nguyen DT, Luong KTX, Nguyen TTM, Tran ANK, Pham LTT, Nguyen VVT, Swagemakers S, Bui CB, Van Hagen PM. CD40LG mutations in Vietnamese patients with X-linked hyper-IgM syndrome; catastrophic anti-phospholipid syndrome as a new complication. Mol Genet Genomic Med 2021; 9:e1732. [PMID: 34114358 PMCID: PMC8404229 DOI: 10.1002/mgg3.1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023] Open
Abstract
Background X‐linked hyper‐IgM syndrome (XHIGM) is a rare primary immunodeficiency caused by CD40 ligand defects. Methods We identified three patients with XHIGM in Ho Chi Minh City, Vietnam. Whole‐exome sequencing, immunological analyses and western blot were performed to investigate phenotypic and genotypic features. Results Despite showing symptoms typical of XHIGM, including recurrent sinopulmonary infections, oral ulcers and otitis media, the diagnosis was significantly delayed. One patient developed anti‐phospholipid syndrome, which has been documented for the first time in XHIGM syndrome. Two patients had elevated IgM levels and all of them had low IgG levels. Exome sequencing revealed mutations in the CD40LG gene: one novel splicing mutation c.156+2T>A and two previously characterised mutations (non‐frameshift deletion c.436_438delTAC, stop‐gain c.654C>A). Due to these mutations, the CD40 ligand was not expressed in any of the three patients, as demonstrated by western blot analysis. Conclusion This is the first report of XHIGM syndrome in Vietnam indicates that an effective diagnostic strategy, such as sequencing analysis, contributes to reliable diagnosis and subsequent therapy.
Collapse
Affiliation(s)
| | | | - Xinh Thi Phan
- Department of Haematology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nghia Huynh
- Department of Haematology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | - Linh Thi Truc Pham
- Functional Genomic Unit, DNA Medical Technology, Ho Chi Minh City, Vietnam
| | | | - Sigrid Swagemakers
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chi-Bao Bui
- Functional Genomic Unit, DNA Medical Technology, Ho Chi Minh City, Vietnam.,School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam.,Molecular Genetics, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Petrus Martinus Van Hagen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Internal medicine, Division Clinical Immunology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Zhang R, Guo N, Yan G, Wang Q, Gao T, Zhang B, Hou N. Ginkgolide C attenuates lipopolysaccharide‑induced acute lung injury by inhibiting inflammation via regulating the CD40/NF‑κB signaling pathway. Int J Mol Med 2021; 47:62. [PMID: 33649807 PMCID: PMC7910011 DOI: 10.3892/ijmm.2021.4895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022] Open
Abstract
Excessive lung inflammation caused by endotoxins, including lipopolysaccharide (LPS), mediates the detrimental effects of acute lung injury (ALI), as evidenced by severe alveolar epithelial cell injury. CD40, a member of the tumor necrosis factor receptor superfamily, serves as a central activator in triggering and transducing a series of severe inflammatory events during the pathological processes of ALI. Ginkgolide C (GC) is an efficient and specific inhibitor of CD40. Therefore, the present study aimed to investigate whether GC alleviated LPS‑induced ALI, as well as the potential underlying mechanisms. LPS‑injured wild‑type and CD40 gene conditional knockout mice, and primary cultured alveolar epithelial cells isolated from these mice served as in vivo and in vitro ALI models, respectively. In the present study, histopathological assessment, polymorphonuclear neutrophil (PMN) infiltration, lung injury score, myeloperoxidase activity, wet‑to‑dry (W/D) weight ratio and hydroxyproline (Hyp) activity were assessed to evaluate lung injury. In addition, immunohistochemistry was performed to evaluate intracellular adhesion molecule‑1, vascular cell adhesion molecule‑1 and inducible nitric oxide synthase expression levels, and TNF‑α, IL‑1β, IL‑6 ELISAs and western blotting were conducted to elucidate the signaling pathway. The results demonstrated that GC alleviated LPS‑induced lung injury, as evidenced by improvements in ultrastructural characteristics and histopathological alterations of lung tissue, inhibited PMN infiltration, as well as reduced lung injury score, W/D weight ratio and hydroxyproline content. In LPS‑injured alveolar epithelial cells, GC significantly reduced IκBα phosphorylation, IKKβ activity and NF‑κB p65 subunit translocation via downregulating CD40, leading to a significant decrease in downstream inflammatory cytokine levels and protein expression levels. In conclusion, the results of the present study demonstrated that GC displayed a protective effect against LPS‑induced ALI via inhibition of the CD40/NF‑κB signaling pathway; therefore, the present study suggested that the CD40/NF‑κB signaling pathway might serve as a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Nan Guo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qian Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tiantian Gao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Baoke Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
20
|
Trottier AM, Godley LA. Inherited predisposition to haematopoietic malignancies: overcoming barriers and exploring opportunities. Br J Haematol 2020; 194:663-676. [PMID: 33615436 DOI: 10.1111/bjh.17247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Inherited predisposition to haematopoietic malignancies, due to deleterious germline variants in a variety of genes, is an important clinical entity with implications for the health and management of patients and their family members. Unfortunately, there remain several common misconceptions in this field that can result in patients going unrecognised and/or having incomplete or improper testing including: the impression that inherited haematological malignancy syndromes are rare, that myeloid and lymphoid malignancy predisposition syndromes are mutually exclusive, and that solid tumour predisposition syndromes are unique and distinct from haematopoietic malignancy predisposition syndromes. In the present review, we challenge these ideas with our insights into germline genetic testing for these conditions with the hope that increased awareness and knowledge will overcome barriers and lead to improved diagnosis and management.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre/Dalhousie University, Halifax, NS, Canada
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Coulter IC, Yan H, Gorodetsky C, Akhbari M, Breitbart S, Kalia SK, Fasano A, Ibrahim GM. Childhood choreoathetosis secondary to hyper-IgM syndrome (CD40 ligand deficiency). NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e899. [PMID: 33067350 PMCID: PMC7577528 DOI: 10.1212/nxi.0000000000000899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Ian C Coulter
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Melika Akhbari
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Sara Breitbart
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
23
|
Uygun DFK, Uygun V, Karasu GT, Daloğlu H, Öztürkmen SI, Çelmeli F, Törün SH, Özen A, Barış S, Aydıner EK, Yalçın K, Kılıç SÇ, Hazar V, Bingöl A, Yeşilipek A. Hematopoietic stem cell transplantation in CD40 ligand deficiency: A single-center experience. Pediatr Transplant 2020; 24:e13768. [PMID: 32573870 DOI: 10.1111/petr.13768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
Abstract
Deficiency of the CD40L, expressed on the surface of T lymphocytes, is caused by mutations in the glycoprotein CD40L (CD154) gene. Resulting defective humoral and cellular responses cause a clinical presentation that includes recurrent sinopulmonary bacterial infections, opportunistic infections, sclerosing cholangitis, neutropenia, and autoimmune manifestations. HSCT represents the only curative treatment modality. However, the therapeutic decision to use HSCT proves challenging in many cases, mainly due to the lack of a phenotype-genotype correlation. We retrospectively reviewed patients with CD40L deficiency who were transplanted in Antalya and Göztepe MedicalPark Pediatric HSCT units from 2014 to 2019 and followed by Akdeniz University School of Medicine Department of Pediatric Immunology. The records of eight male cases, including one set of twins, were evaluated retrospectively. As two transplants each were performed on the twins, a total of ten transplants were evaluated. Conditioning regimens were predominantly based on myeloablative protocols, except for the twins, who received a non-myeloablative regimen for their first transplantation. Median neutrophil and platelet engraftment days were 13 (range 10-19) and 14 (range 10-42) days, respectively. In seven of ten transplants, a CMV reactivation was developed without morbidity. None of the patients developed GVHD, except for one mild case of acute GVHD. All patients survived, and the median follow-up was 852 days. Our data show that HSCT for patients with CD40 ligand deficiency is a potentially effective treatment for long-term disease control.
Collapse
Affiliation(s)
| | - Vedat Uygun
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Istinye University, Antalya, Turkey
| | - Gülsün Tezcan Karasu
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Göztepe Hospital, İstinye University School of Medicine, İstanbul, Turkey
| | - Hayriye Daloğlu
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Seda Irmak Öztürkmen
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Fatih Çelmeli
- Department of Allergy and Immunology, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Selda Hançerli Törün
- Department of Pediatric Infection, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ahmet Özen
- Pendik Department of Pediatric Allergy and Immunology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Safa Barış
- Pendik Department of Pediatric Allergy and Immunology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Elif Karakoç Aydıner
- Pendik Department of Pediatric Allergy and Immunology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Koray Yalçın
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Göztepe Hospital, İstanbul, Turkey
| | - Suar Çakı Kılıç
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Göztepe Hospital, İstanbul, Turkey
| | - Volkan Hazar
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Göztepe Hospital, İstanbul, Turkey
| | - Ayşen Bingöl
- Department of Pediatric Allergy and Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Akif Yeşilipek
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| |
Collapse
|
24
|
Chrysophanol Mitigates T Cell Activation by Regulating the Expression of CD40 Ligand in Activated T Cells. Int J Mol Sci 2020; 21:ijms21176122. [PMID: 32854357 PMCID: PMC7504217 DOI: 10.3390/ijms21176122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023] Open
Abstract
Since T lymphocytes act as mediators between innate and acquired immunity, playing a crucial role in chronic inflammation, regulation of T cell activation to suitable levels is important. Chrysophanol, a member of the anthraquinone family, is known to possess several bioactivities, including anti-microbial, anti-cancer, and hepatoprotective activities, however, little information is available on the inhibitory effects of chrysophanol on T cell activation. To elucidate whether chrysophanol regulates the activity of T cells, IL-2 expression in activated Jurkat T cells pretreated with chrysophanol was assessed. We showed that chrysophanol is not cytotoxic to Jurkat T cells under culture conditions using RPMI (Rosewell Park Memorial Institute) medium. Pretreatment with chrysophanol inhibited IL-2 production in T cells stimulated by CD3/28 antibodies or SEE-loaded Raji B cells. We also demonstrated that chrysophanol suppressed the expression of the CD40 ligand (CD40L) in activated T cells, and uncontrolled conjugation between B cells by pretreatment with chrysophanol reduced T cell activation. Besides, treatment with chrysophanol of Jurkat T cells blocked the NFκB signaling pathway, resulting in the abrogation of MAPK (mitogen-activated protein kinase) in activated T cells. These results provide novel insights into the suppressive effect of chrysophanol on T cell activation through the regulation of CD40L expression in T cell receptor-mediated stimulation conditions.
Collapse
|
25
|
Zhang FZ, Yuan JX, Qin L, Tang LF. Pulmonary Alveolar Proteinosis Due to Pneumocystis carinii in Type 1 Hyper-IgM Syndrome: A Case Report. Front Pediatr 2020; 8:264. [PMID: 32596190 PMCID: PMC7301693 DOI: 10.3389/fped.2020.00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary alveolar proteinosis (PAP) is a rare diffuse lung disease. Reports of rare cases of PAP due to Pneumocystis jirovecii (P. jirovecii) exist in infants with immunodeficiency diseases, but no cases have been reported to date in pediatric patients with type 1 hyper-IgM syndrome (HIGM1). Case Presentation: Herein, we present a case of PAP secondary to P. jirovecii on an infant with HIGM1. He was admitted to our unit because of cough and tachypnea. Lung biopsy confirmed the diagnosis of PAP, whereas hexamine-silver staining of the bronchoalveolar lavage fluid identified P. jirovecii infection. No other probable cause of PAP was observed. Whole exome sequencing indicated a novel c.511dupA (p.I171N*30) hemizygous mutation in the CD40 ligand (CD40LG) gene. He was cured with bronchoalveolar lavage and compound sulfamethoxazole tablets. Conclusions: To our knowledge, this is the first reported case of P. jirovecii infection as a reversible cause of PAP in an infant with HIGM1.
Collapse
Affiliation(s)
- Fei Zhou Zhang
- Department of Pneumology, Zhejiang University School of Medicine of Children's Hospital, Hangzhou, China
| | - Jie Xin Yuan
- Department of Pneumology, Zhejiang University School of Medicine of Children's Hospital, Hangzhou, China
| | - Lu Qin
- Department of Pneumology, Zhejiang University School of Medicine of Children's Hospital, Hangzhou, China
| | - Lan Fang Tang
- Department of Pneumology, Zhejiang University School of Medicine of Children's Hospital, Hangzhou, China
| |
Collapse
|
26
|
Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders. Immunobiology 2019; 225:151899. [PMID: 31899051 DOI: 10.1016/j.imbio.2019.151899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
Abstract
Generation of an accurate humoral and a cell mediated adaptive immune responsesare dictated by binding of an antigen to a T- and a B-cell receptor, respectively (first signal) followed by ligation of costimulatory molecules (second signal). CD40, a costimulatory receptor molecule, expressed mainly on antigen presenting cells, some non-immune cells and tumors, binds to CD40 ligand molecule expressed transiently on T-cells and non-immune cells under inflammatory conditions. In the past decade, the CD40-CD40L interaction has emerged as an immune-potentiating system that governs and regulates host immune response against various diseases and pathogens, failing of which results in detrimental patho-physiologies including cancer and autoimmune disorders. CD40-CD40L transduces immune signals intracellularly via TRAF-dependent and independent mechanisms and further downstream by different MAPK pathways and transcription factors such as NF-κB, p38 etc. While CD40 signaling pathway through its cognate interaction between B and T cells promotes activation and proliferation of B-cells, Ig class switching, and generation of B cell memory; however, CD40-CD40L interaction involving other APCs and non-immune cells relay distinct cell signaling resulting in production of a variety of cytokines/chemokines and cell adhesion molecules ultimately conferring host defense against pathogen. In cancer and autoimmune disorders, CD40-CD40L interaction is also responsible for aberrant expression of many disease specific markers, class I/II MHC molecules and other co-stimulatory molecules such as B7 and CD28 in cell- and disease-specific manner. In the present review, the current state of understanding about the CD40-CD40L mediated regulation of immune and non-immune cells is presented. The current paradigm is to target CD40 using agonist anti-CD40 mAbs alone or in synergistic combination with chemotherapy in order to harness or confer anti-tumor and anti-inflammatory immunity.
Collapse
|
27
|
CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments. Oncogene 2019; 39:2275-2289. [PMID: 31827233 PMCID: PMC7071973 DOI: 10.1038/s41388-019-1141-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the second leading cause of cancer related deaths for women, due mainly to metastatic disease. Invasive tumors exhibit aberrations in recruitment and activity of immune cells, including decreased cytotoxic T cells. Restoring the levels and activity of cytotoxic T cells is a promising anti-cancer strategy; but its success is tumor type-dependent. The mechanisms that coordinate recruitment and activity of immune cells and other stromal cells in breast cancer remain poorly understood. Using the MMTV-PyVmT/FVB mammary tumor model, we demonstrate a novel role for CCL2/CCR2 chemokine signaling in tumor progression by altering the microenvironment. Selective targeting of CCR2 in the PyVmT mammary epithelium inhibited tumor growth and invasion, elevated CD8+ T cells, decreased M2 macrophages and decreased angiogenesis. Co-culture models demonstrated these stromal cell responses were mediated by tumor derived CCL2 and CCR2-mediated suppression of the T cell activating cytokine, CD154. Co-culture analysis indicated that CCR2-induced stromal reactivity was important for tumor cell proliferation and invasion. In breast tumor tissues, CD154 expression inversely correlated with CCR2 expression and correlated with relapse free survival. Targeting the CCL2/CCR2 signaling pathway may reprogram the immune angiogenic and microenvironments and enhance effectiveness of targeted and immuno-therapies.
Collapse
|
28
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Li L, Ji J, Han M, Xu Y, Zhang X, Liu W, Liu S. A Novel CD40L Mutation Associated with X-Linked Hyper IgM Syndrome in a Chinese Family. Immunol Invest 2019; 49:307-316. [PMID: 31401902 DOI: 10.1080/08820139.2019.1638397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Mutations in CD40 ligand gene (CD40L) affecting immunoglobulin class-switch recombination and somatic hypermutation can result in X-Linked Hyper IgM Syndrome (HIGM1, XHIGM), a kind of rare serious primary immunodeficiency disease (PID) characterized by the deficiency of IgG, IgA and IgE and normal or increased serum concentrations of IgM. The objective of this study is to explain genotype-phenotype correlation and highlight the mutation responsible for a Chinese male patient with XHIGM.Methods: Whole exome sequencing (WES) and Sanger sequencing validation were performed to identify and validate the likely pathogenic mutation in the XHIGM family.Results: The results of the sequencing revealed that a new causative mutation in CD40L (c.714delT in exon 5, p.F238Lfs*4) which leads to the change in amino acids (translation terminates at the third position after the frameshift mutation) appeared in the proband. As his mother in the family was carrier with this heterozygous mutation, the hemizygous mutation in this patient came from his mother indicating that genetic mode of XHIGM is X-linked recessive inheritance.Conclusion: This study broadens our knowledge of the mutation in CD40L and lays a solid foundation for prenatal diagnosis and genetic counseling for the XHIGM family.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, China
| | - Jing Ji
- College of public health, Qingdao University, Qingdao, China
| | - Mengmeng Han
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinglei Xu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Zhang
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.,Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|