1
|
Chen Y, Liu J, Shao S, Song Z, Ma Y, Tuo Y, Fang L, Xu Y, Xu B, Gu W, Cao X, Chen J, Yang Y, Wang P, Zhang J, Xu Y, Yu D, Hou P, Meng K, Li Z, Liu G, Qu X, Ji L, Yang R, Zhang L. Characteristics and outcomes of COVID-19 in Chinese immune thrombocytopenia patients: A prospective cohort study. Br J Haematol 2024; 204:1207-1218. [PMID: 37967471 DOI: 10.1111/bjh.19198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has a significant impact on the immune system. This is the first and largest study on pre-existing immune thrombocytopenia (ITP) patients infected with COVID-19 in China. We prospectively collected ITP patients infected with COVID-19 enrolled in the National Longitudinal Cohort of Hematological Diseases (NICHE, NCT04645199) and followed up for at least 1 month after infection. One thousand and one hundred forty-eight pre-existing ITP patients were included. Two hundred and twelve (18.5%) patients showed a decrease in the platelet (PLT) count after infection. Forty-seven (4.1%) patients were diagnosed with pneumonia. Risk factors for a decrease in the PLT count included baseline PLT count <50 × 109/L (OR, 1.76; 95% CI, 1.25-2.46; p = 0.001), maintenance therapy including thrombopoietin receptor agonists (TPO-RAs) (OR, 2.27; 95% CI, 1.60-3.21; p < 0.001) and previous splenectomy (OR, 1.98; 95% CI, 1.09-3.61; p = 0.03). Risk factors for pneumonia included age ≥40 years (OR, 2.45; 95% CI, 1.12-5.33; p = 0.02), ≥2 comorbidities (OR, 3.47; 95% CI, 1.63-7.64; p = 0.001), maintenance therapy including TPO-RAs (OR, 2.14; 95% CI, 1.17-3.91; p = 0.01) and immunosuppressants (OR, 3.05; 95% CI, 1.17-7.91; p = 0.02). In this cohort study, we described the characteristics of pre-existing ITP patients infected with COVID-19 and identified several factors associated with poor outcomes.
Collapse
Affiliation(s)
- Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiaying Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuai Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuanyuan Tuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yanmei Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Bingqi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xuan Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Panjing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dandan Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Pengxiao Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ke Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhirong Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guanyu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xinmiao Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lulu Ji
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
2
|
Al Meslamani AZ. Will SARS-CoV-2 impact the incidence and nature of other respiratory infections? Expert Rev Clin Immunol 2023; 19:1431-1434. [PMID: 37740687 DOI: 10.1080/1744666x.2023.2263646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Affiliation(s)
- Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Vasileiou S, Hill L, Kuvalekar M, Workineh AG, Watanabe A, Velazquez Y, Lulla S, Mooney K, Lapteva N, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Eagar TN, Carrum G, Grimes KA, Leen AM, Lulla P. Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients. Haematologica 2023; 108:1840-1850. [PMID: 36373249 PMCID: PMC10316279 DOI: 10.3324/haematol.2022.281946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX.
| | - LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Aster G Workineh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Suhasini Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kimberly Mooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Todd N Eagar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kevin A Grimes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
4
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Lehnert K, Longhurst H. Selective IgA Deficiency May Be an Underrecognized Risk Factor for Severe COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:181-186. [PMID: 36241155 PMCID: PMC9554200 DOI: 10.1016/j.jaip.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
SARS-CoV-2, the agent responsible for COVID-19, has wreaked havoc around the globe. Hundreds of millions of individuals have been infected and well over six million have died from COVID-19. Many COVID-19 survivors have ongoing physical and psychiatric morbidity, which will remain for the rest of their lives. Early in the pandemic, it became apparent that older individuals and those with comorbidities including obesity, diabetes mellitus, coronary artery disease, hypertension, and renal and pulmonary disease were at increased risk of adverse outcomes. It is also clear that some immunodeficient patients, such as those with innate or T cell-immune defects, are at greater risk from COVID-19. Selective IgA deficiency (sIgAD) is generally regarded as a mild disorder in which most patients are asymptomatic because of redundancy in protective immune mechanisms. Recent data indicate that patients with sIgAD may be at high risk of severe COVID-19. SARS-CoV-2 gains entry primarily through the upper respiratory tract mucosa, where IgA has a critical protective role. This may underlie the vulnerability of sIgAD patients to adverse outcomes from COVID-19. This perspective highlights the need for ongoing research into mucosal immunity to improve COVID-19 treatments for patients with sIgAD.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Seliger B, Jasinski-Bergner S, Massa C, Mueller A, Biehl K, Yang B, Bachmann M, Jonigk D, Eichhorn P, Hartmann A, Wickenhauser C, Bauer M. Induction of pulmonary HLA-G expression by SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:582. [PMID: 36334153 PMCID: PMC9637071 DOI: 10.1007/s00018-022-04592-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal-fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg, Germany.
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Bachmann
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625, Hannover, Germany
| | - Philip Eichhorn
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
6
|
Validation of the T-Lymphocyte Subset Index (TLSI) as a Score to Predict Mortality in Unvaccinated Hospitalized COVID-19 Patients. Biomedicines 2022; 10:biomedicines10112788. [PMID: 36359306 PMCID: PMC9687349 DOI: 10.3390/biomedicines10112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0−2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/μL, CD3+CD8+ < 194 cells/μL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortality.
Collapse
|
7
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Critical role of diagnostic SARS-CoV-2 T cell assays for immunodeficient patients. J Clin Pathol 2022; 75:793-797. [PMID: 36216482 DOI: 10.1136/jcp-2022-208305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
After almost 3 years of intense study, the immunological basis of COVID-19 is better understood. Patients who suffer severe disease have a chaotic, destructive immune response. Many patients with severe COVID-19 produce high titres of non-neutralising antibodies, which are unable to sterilise the infection. In contrast, there is increasing evidence that a rapid, balanced cellular immune response is required to eliminate the virus and mitigate disease severity. In the longer term, memory T cell responses, following infection or vaccination, play a critical role in protection against SARS-CoV-2.Given the pivotal role of cellular immunity in the response to COVID-19, diagnostic T cell assays for SARS-CoV-2 may be of particular value for immunodeficient patients. A diagnostic SARS-CoV-2 T cell assay would be of utility for immunocompromised patients who are unable to produce antibodies or have passively acquired antibodies from subcutaneous or intravenous immunoglobulin (SCIG/IVIG) replacement. In many antibody-deficient patients, cellular responses are preserved. SARS-CoV-2 T cell assays may identify breakthrough infections if reverse transcriptase quantitative PCR (RT-qPCR) or rapid antigen tests (RATs) are not undertaken during the window of viral shedding. In addition to utility in patients with immunodeficiency, memory T cell responses could also identify chronically symptomatic patients with long COVID-19 who were infected early in the pandemic. These individuals may have been infected before the availability of reliable RT-qPCR and RAT tests and their antibodies may have waned. T cell responses to SARS-CoV-2 have greater durability than antibodies and can also distinguish patients with infection from vaccinated individuals.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand .,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for brain Research, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Cancer Research, Faculty of Medical and health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Ameratunga R, Leung E, Woon ST, Chan L, Steele R, Lehnert K, Longhurst H. SARS-CoV-2 Omicron: Light at the End of the Long Pandemic Tunnel or Another False Dawn for Immunodeficient Patients? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2267-2273. [PMID: 35752434 PMCID: PMC9220855 DOI: 10.1016/j.jaip.2022.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
COVID-19 has had a disastrous impact on the world. Apart from at least 6 million deaths, countless COVID-19 survivors are suffering long-term physical and psychiatric morbidity. Hundreds of millions have been plunged into poverty caused by economic misery, particularly in developing nations. Early in the pandemic, it became apparent certain groups of individuals such as the elderly and those with comorbidities were more likely to suffer severe disease. In addition, patients with some forms of immunodeficiency, including those with T-cell and innate immune defects, were at risk of poor outcomes. Patients with immunodeficiencies are also disadvantaged as they may not respond optimally to COVID-19 vaccines and often have pre-existing lung damage. SARS-CoV-2 Omicron (B.1.529) and its subvariants (BA.1, BA.2, etc) have emerged recently and are dominating COVID-19 infections globally. Omicron is associated with a reduced risk of hospitalization and appears to have a lower case fatality rate compared with previous SARS-CoV-2 variants. Omicron has offered hope the pandemic may finally be coming to an end, particularly for vaccinated, healthy individuals. The situation is less clear for individuals with vulnerabilities, particularly immunodeficient patients. This perspective offers insight into potential implications of the SARS-CoV-2 Omicron variant for patients with immunodeficiencies.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. E%
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Ameratunga R. SARS-CoV-2 the ASIA virus (autoimmune/autoinflammatory syndrome induced by adjuvants), the risk of infertility and vaccine hesitancy. Expert Rev Vaccines 2022; 21:1177-1184. [PMID: 35695410 DOI: 10.1080/14760584.2022.2089120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION COVID-19 has had a calamitous impact on the global community. The current death toll far exceeds 6 million and large numbers of patients are experiencing long-term medical and psychiatric morbidity from the infection. The immunopathology of severe COVID-19 is now better understood. In severely affected patients, there is a chaotic, destructive immune response triggered by SARS-CoV-2, where autoimmunity features prominently. AREAS COVERED COVID-19 vaccines ensure a coordinated, balanced immune response to future SARS-CoV-2 infection. The rapid global deployment of effective COVID-19 vaccines has been hindered by financial, logistical and political barriers. Of concern is increasing vaccine hesitancy caused by unfounded conspiracy theories of vaccine adverse effects, often fueled by misinformation and disinformation on social media. EXPERT OPINION This perspective discusses the potential impact of the so-called autoimmune/autoinflammatory syndrome caused by adjuvants (ASIA) on COVID-19 vaccine uptake. Proponents of the ASIA syndrome have inappropriately linked infertility to HPV vaccines and have recently suggested antigenic cross-reactivity between SARS-CoV-2 and ovarian follicles. COVID-19 vaccines have also been linked to ASIA and unfounded fear of infertility is a leading cause of vaccine hesitancy. Vaccine hesitancy caused by spurious disorders such as ASIA are likely to harm individuals and delay global vaccination efforts leading to emergence of vaccine and monoclonal antibody resistant mutants, thereby prolonging the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton, Auckland 1010, New Zealand.,Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, Auckland 1010, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| |
Collapse
|