1
|
Rybicka A, Medel P, Gómez E, Carro MD, García J. Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals (Basel) 2024; 14:2612. [PMID: 39272397 PMCID: PMC11394630 DOI: 10.3390/ani14172612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The effect of including micronised fibre sources (FS) differing in fermentability and hydration capacity (HC) on growth performance, faecal digestibility, and caecal fermentation was investigated in piglets. There were four dietary treatments: a control diet (CON) and three treatments differing in the HC and fermentability of FS added at 1.5% to prestarter (28-42 d) and starter (42-61 d) diets. These were: LHC (low-HC by-product-based insoluble fibre (IF) with a prebiotic fraction (PF) from chicory root); MHC (medium-HC by-product-based IF with a PF); and HHC (high-HC non-fermentable wood-based IF with no PF). There were eight replicates per treatment. Over the entire period, LHC and MHC piglets showed a 10% increase in daily growth and feed intake (p ≤ 0.019) and tended to have a reduced feed conversion ratio (p = 0.087) compared to HHC piglets. At 42 d, faecal protein digestibility increased by 5% in the LHC and MHC groups compared with the HHC group (p = 0.035) and did not differ from the CON group. Both LHC and MHC fibres were more fermented in vitro with caecal inocula from 61 d old piglets than HHC fibre (p ≤ 0.003). These results suggest that balanced soluble and insoluble fibre concentrates can improve piglet performance.
Collapse
Affiliation(s)
- Agnieszka Rybicka
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Emilio Gómez
- Centro de Pruebas de Porcino, ITACyL, Hontalbilla, 40353 Segovia, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier García
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Grześkowiak Ł, Saliu EM, Martínez-Vallespín B, Aschenbach JR, Brockmann GA, Fulde M, Hartmann S, Kuhla B, Lucius R, Metges CC, Rothkötter HJ, Vahjen W, Wessels AG, Zentek J. Dietary fiber and its role in performance, welfare, and health of pigs. Anim Health Res Rev 2022; 23:165-193. [PMID: 36688278 DOI: 10.1017/s1466252322000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
Collapse
Affiliation(s)
- Ł Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - E-M Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - B Martínez-Vallespín
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - G A Brockmann
- Breeding Biology and Molecular Animal Breeding, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - M Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - R Lucius
- Institute of Molecular Parasitology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - H J Rothkötter
- Institute of Anatomy, Otto-von-Guericke-Universität, Medizinische Fakultät, Magdeburg, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - A G Wessels
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
3
|
Huang S, Cui Z, Hao X, Cheng C, Chen J, Wu D, Luo H, Deng J, Tan C. Dietary fibers with low hydration properties exacerbate diarrhea and impair intestinal health and nutrient digestibility in weaned piglets. J Anim Sci Biotechnol 2022; 13:142. [DOI: 10.1186/s40104-022-00771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the hydration properties of different-source fibrous materials by comparing their water-binding capacity (WBC), water swelling capacity (WSC), viscosity, and in vivo effects of selected samples on growth performance, nutrient digestibility, diarrhea, and intestinal health in weaned piglets.
Methods
A total of 13 commercially available fibrous materials were first compared in chemical composition and in vitro hydration property. Subsequently, 40 weaned piglets were randomized to five experimental dietary groups (8 piglets per group): control diet (a basal diet without dietary fiber, CON), basal diet supplemented with 5% microcrystalline cellulose (MCC), 5% wheat bran (WB), 5% Moringaoleifera leaf powder (MOLP), or 5% sugar beet pulp (SBP), followed by analyzing their growth performance and diarrhea rate in a 28-d experiment. After the feeding experiment, anaesthetized piglets were killed, and their intestinal and colon content or plasma samples were analyzed in nutrient digestibility, intestinal morphology, intestinal barrier, short-chain fatty acids (SCFAs), and bacterial population.
Results
In vitro studies showed low hydration properties for WB and MCC, while medium hydration properties for MOLP and SBP. In vivo studies indicated that compared with medium hydration property groups, low hydration property groups showed (1) exacerbated diarrhea, impaired intestinal health, and reduced apparent fecal digestibility of dry matter, gross energy, acid detergent fiber, and neutral detergent fiber; (2) decreased SCFAs concentration and relative levels of Lactobacillus and Bifidobacterium, but increased levels of Escherichia coli and Brachyspira hyodysenteriae in colon contents. Additionally, SBP showed optimal performance in reducing diarrhea and increasing SCFAs production. Correlation analysis revealed a positive correlation of fiber hydration properties with in vitro SCFAs production, and diarrhea index and nutrient digestibility were negatively and positively correlated with SCFAs levels in the colon contents of weaned piglets, respectively.
Conclusions
Different-source dietary fibers varied in their hydration properties and impacts on diarrhea, microbial composition and SCFAs production in weaned piglets. WB and MCC could exacerbate diarrhea and impair nutrient digestibility, probably because their low hydration properties were detrimental to gut microbial homeostasis and fermentation. Our findings provide new ideas for rational use of fiber resources in weaned piglets.
Collapse
|
4
|
Gut health: The results of microbial and mucosal immune interactions in pigs. ACTA ACUST UNITED AC 2021; 7:282-294. [PMID: 34258416 PMCID: PMC8245825 DOI: 10.1016/j.aninu.2021.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
There are a large number of microorganisms in the porcine intestinal tract. These microorganisms and their metabolites contribute to intestinal mucosal immunity, which is of great importance to the health of the host. The host immune system can regulate the distribution and composition of intestinal microorganisms and regulate the homeostasis of intestinal flora by secreting a variety of immune effector factors, such as mucin, secretory immunoglobulin A (sIgA), regenerating islet-derived III (RegIII)γ, and defensin. Conversely, intestinal microorganisms can also promote the differentiation of immune cells including regulatory T cells (Treg) and Th17 cells through their specific components or metabolites. Studies have shown that imbalances in the intestinal flora can lead to bacterial translocation and compromised intestinal barrier function, affecting the health of the body. This review focuses on the composition of the pig intestinal flora and the characteristics of intestinal mucosal immunity, discusses the interaction mechanism between the flora and intestinal mucosal immunity, as well as the regulation through fecal microbiota transplantation (FMT), dietary nutritional composition, probiotics and prebiotics of pig intestinal microecology. Finally, this review provides insights into the relationship between intestinal microorganisms and the mucosal immune system.
Collapse
|
5
|
Effect of increasing inclusion rates of tofu by-product in diets of growing pigs on nitrogen balance and ammonia emission from manure. Animal 2020; 14:1167-1175. [PMID: 31907083 DOI: 10.1017/s1751731119003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To reduce competition with human-edible feed resources, it is of interest to incorporate by-products from the food industry in animal feeds. The current research investigated the effect of including increasing amounts of tofu by-product (TF) in practical pig diets on animal performance, nitrogen balance and ammonia emissions from manure. Two experiments were conducted including a control diet without TF, containing 160 g/kg dietary non-starch polysaccharides (NSPs) and three diets including 122, 246 and 360 g TF/kg DM (TF122, TF246 and TF360, respectively) to reach 220, 280 and 360 g/kg NSP. All diets had the same level of CP and protein digestible in the small intestine which particularly was realized by replacing rice bran with TF. Animal performance was assessed in a first experiment with 40 growing barrows with initial BW of 26.6 ± 1.80 kg (M ± SD) being allocated to the 4 treatments, during 2 growth phases (i.e. until 50 kg BW and from 50 to 80 kg BW). In the growth phase until 50 kg, feed intake and average daily gain (ADG) were linearly reduced by dietary TF inclusion, while this negative impact disappeared during the second growth phase (50 to 80 kg BW). Tofu by-product inclusion even positively affected the feed conversion ratio during this second growth phase (3.4 to 2.7 kg feed/kg ADG for 0 to 360 g/kg dietary TF). Over the entire growth period, performance and feed intake were negatively affected at the highest dietary TF level. Experiment 2 was conducted to assess digestibility, nitrogen balance and ammonia emission from manure. For this purpose, 16 pigs with BW of 62.8 ± 3.6 kg (M ± SD) were assigned to either 1 of the 4 treatments. There was no difference in total tract apparent digestibility of dietary organic matter or CP, while NDF digestibility increased with increasing TF level, suggesting increasing importance of the hindgut fermentation when digesting diets with increasing TF levels. Nevertheless, this was not reflected in increasing levels of faecal volatile fatty acids or purines, nor in reduced manure pH. As a result, ammonia emission from slurry was not reduced through dietary TF inclusion, despite the linear decrease in urinary nitrogen. In conclusion, TF can be included in pigs' diets up to an inclusion rate of 25% without risk of impaired animal performance; however, this dietary strategy fails to mitigate ammonia emission from slurry.
Collapse
|
6
|
Li Q, Burrough ER, Gabler NK, Loving CL, Sahin O, Gould SA, Patience JF. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs1. J Anim Sci 2019; 97:2139-2153. [PMID: 30888017 PMCID: PMC6488326 DOI: 10.1093/jas/skz093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of a source of dietary soluble (SF) and insoluble fiber (IF) without or with exogenous carbohydrases (xylanase, β-glucanase, and pectinase) on diarrhea incidence, selected immune responses, and growth performance in enterotoxigenic Escherichia coli (ETEC)-challenged pigs. Sixty weaned pigs (6.9 ± 0.1 kg BW, ~23 d of age) were blocked by initial BW and placed in individual pens. Pens were randomly assigned to one of six treatments (n = 10 per treatment), including a nonchallenged control (NC), a positive challenge control (PC), the PC + a soluble fiber diet (10% sugar beet pulp) without (SF-) or with carbohydrases (SF+), and PC + an IF diet (15% corn distillers dried grains with solubles) without (IF-) or with carbohydrases (IF+). The control diet was primarily based on corn and soybean meal with 13.5% whey powder. The two sources of fiber were added at the expense of cornstarch in the control diet. Pigs were orally inoculated with 6 mL hemolytic F18 ETEC (~3.5 × 109 cfu/mL) or sham infected with 6 mL phosphate-buffered saline on day 7 (0 d postinoculation, dpi) postweaning. All ETEC challenged pigs were confirmed to be genetically susceptible to F18 ETEC. Pigs had free access to feed and water throughout the 14-d trial. Pig BW and feed intake were recorded on dpi -7, 0, and 7 or 8. Fecal swabs were collected on dpi -7, 0, 1, 2, 3, 5, and 7 or 8 to evaluate hemolytic E. coli shedding. Fecal score was visually ranked daily postchallenge to evaluate diarrhea incidence. Blood samples were collected on dpi -1, 3, and 7 or 8 at necropsy and intestinal tissues were collected at necropsy. Pigs on PC had lower dpi 1 to 7 ADG and ADFI than those on NC (P < 0.05). Compared with PC pigs, SF+ pigs had greater ADG during both pre- and postchallenge period (P < 0.05). The IF- increased postchallenge diarrhea incidence compared with PC (P < 0.05). Pigs on SF- had lower ileal E. coli attachment than PC (P < 0.05). The SF+ reduced haptoglobin and IF+ reduced C-reactive protein on dpi 3 compared with PC (P < 0.05). Compared with PC pigs, SF+ pigs tended to have lower ileal tumor necrosis factor alpha and greater ileal occludin (OCLN) mRNA (P < 0.10) and had greater (P < 0.05) colonic OCLN mRNA levels. Collectively, IF- increased incidence of diarrhea and fecal E. coli shedding compared with PC. The SF+ pigs had improved growth compared with PC pigs, likely due in part to a reduction in inflammatory intermediates.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
7
|
Liu H, Gong F, Wei F, Wu H. Artificial simulation of salivary and gastrointestinal digestion, and fermentation by human fecal microbiota, of polysaccharides from Dendrobium aphyllum. RSC Adv 2018; 8:13954-13963. [PMID: 35539317 PMCID: PMC9079872 DOI: 10.1039/c8ra01179f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022] Open
Abstract
In vitro salivary and gastrointestinal (GI) digestion and fermentation of polysaccharides extracted from Dendrobium aphyllum were investigated in this study. Salivary amylase showed no influence on D. aphyllum polysaccharides (DAP). The molecular weight of DAP decreased dramatically during the first 0.5 h of gastric digestion, and then reduced steadily during the subsequent GI tract consumption. The content of reducing sugars increased steadily during GI digestion. Only released free mannose of DAP was detectable by gas chromatography-mass spectrometry analysis during the first 12 h of fermentation, which was contributed by fecal microbiota metabolism. In terms of the fermentation pattern, the pH dropped significantly due to the formation of six types of short-chain fatty acids (SCFAs). This study demonstrates that polysaccharides extracted from D. aphyllum can be digested by the GI tract and are physiologically active in the human large bowel by lowering the pH of the large intestinal environment and promoting the production of SCFAs. D. aphyllum polysaccharide showed variational tendencies after artificial stimulated gastrointestinal digestion and fermentation by human feces.![]()
Collapse
Affiliation(s)
- Huifan Liu
- Department of Food Quality and Safety
- College of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Fan Gong
- Henan Institute of Product Quality Inspection and Supervision
- Zhengzhou
- China
| | - Fashan Wei
- Henan Institute of Product Quality Inspection and Supervision
- Zhengzhou
- China
| | - Hui Wu
- Department of Food Quality and Safety
- College of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
8
|
Kanengoni AT, Chimonyo M, Ndimba BK, Dzama K. Potential of Using Maize Cobs in Pig Diets - A Review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1669-79. [PMID: 26580433 PMCID: PMC4647074 DOI: 10.5713/ajas.15.0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 11/27/2022]
Abstract
The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.
Collapse
Affiliation(s)
- A. T. Kanengoni
- Agricultural Research Council-Animal Production Institute, Pretoria 0062,
South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch 7602,
South Africa
| | - M. Chimonyo
- Discipline of Animal and Poultry Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209,
South Africa
| | - B. K. Ndimba
- Agricultural Research Council, Proteomics Research and Services Unit, Infruitech-Nietvoorbij Institute, Department of Biotechnology, University of the Western Cape, Cape Town 7535,
South Africa
| | - K. Dzama
- Department of Animal Sciences, Stellenbosch University, Stellenbosch 7602,
South Africa
| |
Collapse
|
9
|
Kraler M, Schedle K, Schwarz C, Domig KJ, Pichler M, Oppeneder A, Wetscherek W, Prückler M, Pignitter M, Pirker KF, Somoza V, Heine D, Kneifel W. Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals. Arch Anim Nutr 2015; 69:378-98. [DOI: 10.1080/1745039x.2015.1075671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Potential of cereal grains and grain legumes in modulating pigs׳ intestinal microbiota – A review. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Viscous methyl cellulose solution thickens gastric mucosa and increases the number of gland mucous cells in mice. Br J Nutr 2013; 110:1195-200. [PMID: 23432928 DOI: 10.1017/s0007114513000470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have observed a stiffening of the gastric wall in mice following oral administration of viscous methyl cellulose (MC) solution as a vehicle for food chemicals, an effect which has not previously been reported. To further investigate this effect, young male ICR mice(n 48) were divided into four groups (one control and three experimental groups) of twelve mice each. Experimental groups I, II and III were administered 0·2 ml of 0·5% (w/v) MC viscous solution/d via a stomach tube for 2, 3 and 4 weeks, respectively. Stomachs were collected following 12 h fasting. The weight of the stomach and mucosa of seven mice per group was measured, and the mucosa was used for the measurement of 8-oxo-20-deoxyguanosine (8-oxodG). Stomach tissue slices from the remaining five mice per group were stained with haematoxylin and eosin to measure mucosal thickness, and were immunostained with an HIK1083 antibody to determine the number of gastric gland mucous cells. The mucosal thickness of the groups administered the MC solution for 3 and 4 weeks, and the size of the HIK1083-immunostained area of the groups administered the MC solution for 2, 3 and 4 weeks were significantly increased(P,0·01) compared with those of the control group. The amount of 8-oxodG was not significantly affected. These results indicate that oral administration of viscous MC solution leads to the thickening of the gastric mucosa, which may be related to an increase in the number of gland mucous cells.
Collapse
|
13
|
Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal 2012; 6:603-11. [PMID: 22436276 DOI: 10.1017/s1751731111001844] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To study the fermentation characteristics of different non-conventional dietary fibre (DF) sources with varying levels of indigestible CP content and their effects on the production of fermentation metabolites and on faecal nitrogen (N) excretion, an experiment was conducted with 40 growing pigs (initial BW 23 kg) using wheat bran (WB), pea hulls (PH), pea inner fibres (PIF), sugar beet pulp (SBP) or corn distillers dried grains with solubles (DDGS). The diets also contained soya protein isolate, pea starch and sucrose, and were supplemented with vitamin-mineral premix. Faecal samples were collected for 3 consecutive days from day 10, fed with added indigestible marker (chromic oxide) for 3 days from day 13 and pigs were slaughtered on day 16 from the beginning of the experiment. Digesta from the ileum and colon were collected and analysed for short-chain fatty acids (SCFA) and ammonia (NH3) content. The apparent total tract N digestibility was the lowest (P < 0.001) in diets based on DDGS (74%), medium in diets with WB and SBP (76% each) and highest in those with PIF and PH (79% and 81%, respectively). Expressed per kg fermented non-starch polysaccharides (NSP), faecal N excretion was higher with DDGS and WB diets (130 and 113 g/kg NSP fermented, respectively) and lower with PIF, PH and SBP diets (42, 52 and 55 g/kg NSP fermented, respectively). The PH-based diets had the highest (P < 0.05) SCFA concentrations, both in the ileum and the colon (27 and 122 mMol/kg digesta, respectively). The highest NH3 concentration was also found in the colon of pigs fed with PH (132 mMol/kg digesta). Loading plot of principle component analysis revealed that the CP : NSP ratio was positively related with faecal N excretion and NH3 concentration in colon contents, whereas negatively related with SCFA concentration in colon contents. In conclusion, pea fibres and SBP increased SCFA and reduced NH3 concentration in the pig's intestine and reduced faecal N excretion, which makes pea fibres and SBP an interesting ingredient to use in pig diet to improve the positive effect of DF fermentation on the gastrointestinal tract and reduce faecal N excretion.
Collapse
|
14
|
Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial Tag–Encoded FLX Amplicon Pyrosequencing (bTEFAP) for Microbiome Studies: Bacterial Diversity in the Ileum of Newly WeanedSalmonella-Infected Pigs. Foodborne Pathog Dis 2008; 5:459-72. [DOI: 10.1089/fpd.2008.0107] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Scot E. Dowd
- USDA-ARS Livestock Issues Research Unit, Lubbock, Texas
| | - Yan Sun
- Medical Biofilm Research Institute, Lubbock, Texas
| | | | | | | |
Collapse
|
15
|
Schedle K, Plitzner C, Ettle T, Zhao L, Domig KJ, Windisch W. Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch Anim Nutr 2008; 62:141-51. [DOI: 10.1080/17450390801892617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|