• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625220)   Today's Articles (812)   Subscriber (49500)
For: Jentsch W, Schweigel M, Weissbach F, Scholze H, Pitroff W, Derno M. Methane production in cattle calculated by the nutrient composition of the diet. Arch Anim Nutr 2007;61:10-9. [PMID: 17361944 DOI: 10.1080/17450390601106580] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Number Cited by Other Article(s)
1
Hristov AN. Invited review: Advances in nutrition and feed additives to mitigate enteric methane emissions. J Dairy Sci 2024;107:4129-4146. [PMID: 38942560 DOI: 10.3168/jds.2023-24440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 06/30/2024]
2
Chen T, Wang Q, Wang Y, Dou Z, Yu X, Feng H, Wang M, Zhang Y, Yin J. Using fresh vegetable waste from Chinese traditional wet markets as animal feed: Material feasibility and utilization potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;902:166105. [PMID: 37582443 DOI: 10.1016/j.scitotenv.2023.166105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
3
De Bhowmick G, Hayes M. Potential of Seaweeds to Mitigate Production of Greenhouse Gases during Production of Ruminant Proteins. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023;7:2200145. [PMID: 37205931 PMCID: PMC10190624 DOI: 10.1002/gch2.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Indexed: 05/21/2023]
4
Kuhla B, Viereck G. Enteric methane emission factors, total emissions and intensities from Germany's livestock in the late 19th century: A comparison with the today's emission rates and intensities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;848:157754. [PMID: 35926614 DOI: 10.1016/j.scitotenv.2022.157754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
5
Prediction of enteric methane production and yield in sheep using a Latin America and Caribbean database. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
6
Negussie E, González-Recio O, Battagin M, Bayat AR, Boland T, de Haas Y, Garcia-Rodriguez A, Garnsworthy PC, Gengler N, Kreuzer M, Kuhla B, Lassen J, Peiren N, Pszczola M, Schwarm A, Soyeurt H, Vanlierde A, Yan T, Biscarini F. Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. J Dairy Sci 2022;105:5124-5140. [DOI: 10.3168/jds.2021-20158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
7
Weiby KV, Krizsan SJ, Eknæs M, Schwarm A, Whist AC, Schei I, Steinshamn H, Lund P, Beauchemin KA, Dønnem I. Animal Feed Science and TechnologyAssociations among nutrient concentration, silage fermentation products, in vivo organic matter digestibility, rumen fermentation and in vitro methane yield in 78 grass silages. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Kass M, Ramin M, Hanigan MD, Huhtanen P. Comparison of Molly and Karoline models to predict methane production in growing and dairy cattle. J Dairy Sci 2022;105:3049-3063. [PMID: 35094851 DOI: 10.3168/jds.2021-20806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
9
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021;12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]  Open
10
Richardson CM, Amer PR, Hely FS, van den Berg I, Pryce JE. Estimating methane coefficients to predict the environmental impact of traits in the Australian dairy breeding program. J Dairy Sci 2021;104:10979-10990. [PMID: 34334195 DOI: 10.3168/jds.2021-20348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
11
Vibart R, de Klein C, Jonker A, van der Weerden T, Bannink A, Bayat AR, Crompton L, Durand A, Eugène M, Klumpp K, Kuhla B, Lanigan G, Lund P, Ramin M, Salazar F. Challenges and opportunities to capture dietary effects in on-farm greenhouse gas emissions models of ruminant systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;769:144989. [PMID: 33485195 DOI: 10.1016/j.scitotenv.2021.144989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
12
Sandberg LM, Thaller G, Görs S, Kuhla B, Metges CC, Krattenmacher N. The relationship between methane emission and daytime-dependent fecal archaeol concentration in lactating dairy cows fed two different diets. Arch Anim Breed 2020;63:211-218. [PMID: 32760788 PMCID: PMC7397718 DOI: 10.5194/aab-63-211-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/27/2020] [Indexed: 11/11/2022]  Open
13
Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals (Basel) 2020;10:ani10081247. [PMID: 32707953 PMCID: PMC7459492 DOI: 10.3390/ani10081247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]  Open
14
Tümmler LM, Derno M, Röttgen V, Vernunft A, Tuchscherer A, Wolf P, Kuhla B. Effects of 2 colostrum and subsequent milk replacer feeding intensities on methane production, rumen development, and performance in young calves. J Dairy Sci 2020;103:6054-6069. [PMID: 32418697 DOI: 10.3168/jds.2019-17875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023]
15
Fant P, Ramin M, Jaakkola S, Grimberg Å, Carlsson AS, Huhtanen P. Effects of different barley and oat varieties on methane production, digestibility, and fermentation pattern in vitro. J Dairy Sci 2019;103:1404-1415. [PMID: 31785868 DOI: 10.3168/jds.2019-16995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022]
16
Børsting CF, Brask M, Hellwing ALF, Weisbjerg MR, Lund P. Enteric methane emission and digestion in dairy cows fed wheat or molasses. J Dairy Sci 2019;103:1448-1462. [PMID: 31785884 DOI: 10.3168/jds.2019-16655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
17
Li R, Teng Z, Lang C, Zhou H, Zhong W, Ban Z, Yan X, Yang H, Farouk MH, Lou Y. Effect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheep. PLoS One 2019;14:e0214777. [PMID: 31116757 PMCID: PMC6530836 DOI: 10.1371/journal.pone.0214777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]  Open
18
Cattle Diets Strongly Affect Nitrous Oxide in the Rumen. SUSTAINABILITY 2018. [DOI: 10.3390/su10103679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Pszczola M, Strabel T, Mucha S, Sell-Kubiak E. Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci Rep 2018;8:15164. [PMID: 30310168 PMCID: PMC6181922 DOI: 10.1038/s41598-018-33327-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/24/2018] [Indexed: 11/08/2022]  Open
20
Zetouni L, Difford GF, Lassen J, Byskov MV, Norberg E, Løvendahl P. Is rumination time an indicator of methane production in dairy cows? J Dairy Sci 2018;101:11074-11085. [PMID: 30292552 DOI: 10.3168/jds.2017-14280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/01/2018] [Indexed: 11/19/2022]
21
Haro AN, Carro MD, de Evan T, González J. Protecting protein against ruminal degradation could contribute to reduced methane production. J Anim Physiol Anim Nutr (Berl) 2018;102:1482-1487. [PMID: 30066437 DOI: 10.1111/jpn.12973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 11/30/2022]
22
Alemu AW, Vyas D, Manafiazar G, Basarab JA, Beauchemin KA. Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J Anim Sci 2018;95:3727-3737. [PMID: 28805902 DOI: 10.2527/jas.2017.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
23
Li ZJ, Ren H, Liu SM, Cai CJ, Han JT, Li F, Yao JH. Dynamics of methanogenesis, ruminal fermentation, and alfalfa degradation during adaptation to monensin supplementation in goats. J Dairy Sci 2017;101:1048-1059. [PMID: 29248222 DOI: 10.3168/jds.2017-13254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
24
Danielsson R, Ramin M, Bertilsson J, Lund P, Huhtanen P. Evaluation of a gas in vitro system for predicting methane production in vivo. J Dairy Sci 2017;100:8881-8894. [DOI: 10.3168/jds.2017-12675] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022]
25
Houdijk J, Tolkamp B, Rooke J, Hutchings M. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism. Int J Parasitol 2017;47:633-641. [DOI: 10.1016/j.ijpara.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
26
Nutrient utilization and methane emissions in Murrah buffalo calves fed on diets with different methanogenic potential. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
27
Evans E, Messerschmidt U. Review: Sugar beets as a substitute for grain for lactating dairy cattle. J Anim Sci Biotechnol 2017;8:25. [PMID: 28286650 PMCID: PMC5341195 DOI: 10.1186/s40104-017-0154-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/17/2017] [Indexed: 12/20/2022]  Open
28
de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci 2017;100:855-870. [DOI: 10.3168/jds.2016-11246] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023]
29
Vanegas JL, González J, Carro MD. Influence of protein fermentation and carbohydrate source on in vitro methane production. J Anim Physiol Anim Nutr (Berl) 2017;101:e288-e296. [DOI: 10.1111/jpn.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022]
30
Jonker A, Molano G, Koolaard J, Muetzel S. Methane emissions from lactating and non-lactating dairy cows and growing cattle fed fresh pasture. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
31
Jonker A, Molano G, Antwi C, Waghorn GC. Enteric methane and carbon dioxide emissions measured using respiration chambers, the sulfur hexafluoride tracer technique, and a GreenFeed head-chamber system from beef heifers fed alfalfa silage at three allowances and four feeding frequencies1–3. J Anim Sci 2016;94:4326-4337. [DOI: 10.2527/jas.2016-0646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
32
An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets. Animal 2016;11:68-77. [PMID: 27364619 DOI: 10.1017/s175173111600121x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]  Open
33
Genetic control of greenhouse gas emissions. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s2040470016000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
34
Moorby JM, Fleming HR, Theobald VJ, Fraser MD. Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Sci Rep 2015;5:17915. [PMID: 26647754 PMCID: PMC4673420 DOI: 10.1038/srep17915] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022]  Open
35
Ramin M, Lerose D, Tagliapietra F, Huhtanen P. Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
36
Huhtanen P, Ramin M, Udén P. Nordic dairy cow model Karoline in predicting methane emissions: 1. Model description and sensitivity analysis. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
37
Aguinaga Casañas MA, Rangkasenee N, Krattenmacher N, Thaller G, Metges CC, Kuhla B. Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows. J Dairy Sci 2015;98:4074-83. [PMID: 25841964 DOI: 10.3168/jds.2015-9310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
38
Storlien TM, Volden H, Almøy T, Beauchemin KA, McAllister TA, Harstad OM. Prediction of enteric methane production from dairy cows. ACTA AGR SCAND A-AN 2014. [DOI: 10.1080/09064702.2014.959553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
39
Dong R, Zhao G. Relationship between the Methane Production and the CNCPS Carbohydrate Fractions of Rations with Various Concentrate/roughage Ratios Evaluated Using In vitro Incubation Technique. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014;26:1708-16. [PMID: 25049761 PMCID: PMC4092889 DOI: 10.5713/ajas.2013.13245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/06/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
40
Nielsen NI, Volden H, Åkerlind M, Brask M, Hellwing ALF, Storlien T, Bertilsson J. A prediction equation for enteric methane emission from dairy cows for use in NorFor. ACTA AGR SCAND A-AN 2013. [DOI: 10.1080/09064702.2013.851275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
41
Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
42
Hippenstiel F, Pries M, Büscher W, Südekum KH. Comparative evaluation of equations predicting methane production of dairy cattle from feed characteristics. Arch Anim Nutr 2013;67:279-88. [DOI: 10.1080/1745039x.2013.793047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
43
Prusty S, Mohini M, Kundu SS, Kumar A, Datt C. Methane emissions from river buffaloes fed on green fodders in relation to the nutrient [corrected] intake and digestibility. Trop Anim Health Prod 2013;46:65-70. [PMID: 23857630 DOI: 10.1007/s11250-013-0447-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
44
Ramin M, Huhtanen P. Development of equations for predicting methane emissions from ruminants. J Dairy Sci 2013;96:2476-2493. [DOI: 10.3168/jds.2012-6095] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022]
45
An LCA researcher's wish list – data and emission models needed to improve LCA studies of animal production. Animal 2013;7 Suppl 2:212-9. [DOI: 10.1017/s1751731113000785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
46
Huhtanen P, Ramin M. Evaluation of the Nordic dairy cow model Karoline in predicting methane production. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2013.770914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
47
Ramin M, Huhtanen P. Development of non-linear models for predicting enteric methane production. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2013.765908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
48
Singh S, Kushwaha B, Nag S, Mishra A, Singh A, Anele U. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2012.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
49
Storm IMLD, Hellwing ALF, Nielsen NI, Madsen J. Methods for Measuring and Estimating Methane Emission from Ruminants. Animals (Basel) 2012;2:160-83. [PMID: 26486915 PMCID: PMC4494326 DOI: 10.3390/ani2020160] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022]  Open
50
Sejian V, Lal R, Lakritz J, Ezeji T. Measurement and prediction of enteric methane emission. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2011;55:1-16. [PMID: 20809221 DOI: 10.1007/s00484-010-0356-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 05/29/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA