1
|
Novela M, Pinto SC, Tembe A, Paulo E, Mabasso M, Gove A, Changule AP, Joaquim LA, Tseu R, dos Anjos F, Bila CG. Soybean oil addition to wheat bran-based diet improves laying hens' performance. Vet World 2023; 16:1572-1575. [PMID: 37621532 PMCID: PMC10446721 DOI: 10.14202/vetworld.2023.1572-1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Wheat bran (WB) is used extensively in animal feed. Despite its nutritional value, its use is limited because of its high-fiber content. We evaluated the effect of soybean oil on laying hen performance with maize meal partly replaced by WB. Materials and Methods Thirty-six ISA Brown laying hens, 40 weeks old, were used in a completely randomized design in which laying hens were distributed in individual cages, with three replications of four birds and assigned to three treatments: T1 (basal diet), T2 (60% basal diet + 20% maize meal + 20% WB), and T3 (60% basal diet + 20% maize meal + 17.5% WB + 2.5% soybean oil). Results Compared with the control group (T1), replacing 20% of yellow maize with WB (T2) did not affect average live weight, egg laying rate, soft-shelled egg production, egg mass, feed conversion per dozen eggs, or laying hen viability (p > 0.05). When 20% of the maize meal was replaced with WB, feed intake and feed conversion per egg mass increased (p < 0.05). Furthermore, adding 2.5% soybean oil to feed containing WB improved laying hen performance by significantly reducing feed conversion per egg mass (p < 0.05). Conclusion Adding 2.5% soybean oil to diets containing WB instead of 17.5% yellow maize improved the feed conversion per egg mass performance of laying hens.
Collapse
Affiliation(s)
- Mariana Novela
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Sónia Carlitos Pinto
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Angélica Tembe
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Emmanuel Paulo
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Marcos Mabasso
- Department of Basic Sciences, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Albino Gove
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Abilio Paulo Changule
- Directorate of Animal Science, Agricultural Research Institute of Mozambique, Maputo, Mozambique
| | - Leonel António Joaquim
- Angónia Reseach Station, Agricultural Research Institute of Mozambique, Maputo, Mozambique
| | - Ramos Tseu
- Section of Animal Nutrition, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Filomena dos Anjos
- Section of Animal Nutrition, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Custódio Gabriel Bila
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
2
|
Lu Z, Zeng N, Jiang S, Wang X, Yan H, Gao C. Dietary replacement of soybean meal by fermented feedstuffs for aged laying hens: effects on laying performance, egg quality, nutrient digestibility, intestinal health, follicle development, and biological parameters in a long-term feeding period. Poult Sci 2023; 102:102478. [PMID: 36696763 PMCID: PMC9879788 DOI: 10.1016/j.psj.2023.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with fermented soybean meal (FSM) or fermented miscellaneous meal (FMM, cottonseed meal: coconut meal = at a 1:1 ratio) on the intestinal health, laying performance, egg quality, and follicle development of laying hens. A total of 1,008 54-wk-old laying hens were randomly divided into 7 treatment groups and fed a corn-soybean base diet in addition to 2%, 4%, and 8% FSM or FMM. The results showed that fermentation increased the contents of crude protein, amino acids (Ser, Gly, Cys, Leu, Lys, His, and Arg), and organic acids (butyric acid, citric acid, succinic acid) and decreased the contents of neutral and acid detergent fiber in the soybean and miscellaneous meals (P < 0.05). Compared with the results found for the control group, feeding with 4% FSM increased the egg production, egg mass and average daily feed intake (ADFI), and feeding with 4% FMM increased the ADFI of laying hens (P < 0.05). Furthermore, feeding with 8% FMM reduced the productive performance and laying performance, supplementation with 4% FSM increased the eggshell strength and weight, and 2 to 4% FSM increased the egg albumen height and Haugh unit (P < 0.05). Moreover, 2 to 8% FSM or 2 to 4% FMM enhanced the apparent digestibility of dry matter, crude protein, and NDF for laying hens (P < 0.05). The relative weight, villus height, crypt depth, and villus:crypt ratio of the jejunum were higher in the 4% FSM- and FMM-fed groups (P < 0.05). Moreover, diamine oxidase (DAO) activity, transepithelial electrical resistance (TEER), and the expression of tight junction proteins (ZO-1, Occluding, and Claudin1), the intestinal stem cell marker Lgr5, and the proliferation cell marker proliferating cell nuclear antigen (PCNA) was upregulated in the jejunum of laying hens fed 4% FSM and FMM (P < 0.05). The relative weight of the ovaries, and the number of small yellow follicles and large white follicles were elevated after 4% FSM or FMM supplementation. Furthermore, the levels of serum follicle-stimulating hormone and luteinizing hormone were increased in the 4% FSM and FMM groups (P < 0.05). In conclusion, the supplementation of laying hen feed with FSM and FMM improved the laying performance, egg quality, intestinal barrier function, and follicle development of aged laying hens, and 4% FSM supplementation was optimal.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunqi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Hu R, Li S, Diao H, Huang C, Yan J, Wei X, Zhou M, He P, Wang T, Fu H, Zhong C, Mao C, Wang Y, Kuang S, Tang W. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Front Immunol 2023; 14:1095740. [PMID: 36865557 PMCID: PMC9972974 DOI: 10.3389/fimmu.2023.1095740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Intestinal health is closely associated with overall animal health and performance and, consequently, influences the production efficiency and profit in feed and animal production systems. The gastrointestinal tract (GIT) is the main site of the nutrient digestive process and the largest immune organ in the host, and the gut microbiota colonizing the GIT plays a key role in maintaining intestinal health. Dietary fiber (DF) is a key factor in maintaining normal intestinal function. The biological functioning of DF is mainly achieved by microbial fermentation, which occurs mainly in the distal small and large intestine. Short-chain fatty acids (SCFAs), the main class of microbial fermentation metabolites, are the main energy supply for intestinal cells. SCFAs help to maintain normal intestinal function, induce immunomodulatory effects to prevent inflammation and microbial infection, and are vital for the maintenance of homeostasis. Moreover, because of its distinct characteristics (e.g. solubility), DF is able to alter the composition of the gut microbiota. Therefore, understanding the role that DF plays in modulating gut microbiota, and how it influences intestinal health, is essential. This review gives an overview of DF and its microbial fermentation process, and investigates the effect of DF on the alteration of gut microbiota composition in pigs. The effects of interaction between DF and the gut microbiota, particularly as they relate to SCFA production, on intestinal health are also illustrated.
Collapse
Affiliation(s)
- Ruiqi Hu
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chongbo Huang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jiayou Yan
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaolan Wei
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mengjia Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Peng He
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Tianwei Wang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Hongsen Fu
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Chengbo Zhong
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Chi Mao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Wenjie Tang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Grześkowiak Ł, Saliu EM, Martínez-Vallespín B, Aschenbach JR, Brockmann GA, Fulde M, Hartmann S, Kuhla B, Lucius R, Metges CC, Rothkötter HJ, Vahjen W, Wessels AG, Zentek J. Dietary fiber and its role in performance, welfare, and health of pigs. Anim Health Res Rev 2022; 23:165-193. [PMID: 36688278 DOI: 10.1017/s1466252322000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
Collapse
Affiliation(s)
- Ł Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - E-M Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - B Martínez-Vallespín
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - G A Brockmann
- Breeding Biology and Molecular Animal Breeding, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - M Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - R Lucius
- Institute of Molecular Parasitology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - H J Rothkötter
- Institute of Anatomy, Otto-von-Guericke-Universität, Medizinische Fakultät, Magdeburg, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - A G Wessels
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
5
|
Li X, Ren M, Zhang X, Wang L. Insoluble dietary fiber (non-starch polysaccharides) from rice bran attenuates cadmium-induced toxicity in mice by modulating the gut microbiota and alleviating liver and kidney injury. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li Y, Xia D, Chen J, Zhang X, Wang H, Huang L, Shen J, Wang S, Feng Y, He D, Wang J, Ye H, Zhu Y, Yang L, Wang W. Dietary fibers with different viscosity regulate lipid metabolism via ampk pathway: roles of gut microbiota and short-chain fatty acid. Poult Sci 2022; 101:101742. [PMID: 35245807 PMCID: PMC8892021 DOI: 10.1016/j.psj.2022.101742] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Dietary fiber (DF) improves gastrointestinal health and has important associations with the alleviation of intestinal diseases and metabolic syndrome. However, due to DFs complex characteristics, such as solubility, viscosity, and fermentability, the mechanism in these was not consistent. As an herbivore, the goose has a prominent digestive ability to DF. Therefore, we choose low, medium, and high viscosity DFs (respectively resistant starch-3 []RS], inulin [INU], and β–glucan [GLU]) as Magang goose diet treatment for 4 wk, to investigate the effect and potential mechanism of different viscosities DFs on the growth and development process of goose. In summary, three degrees of viscous DFs could decrease the mechanismic lipid level of geese by promoting acid-producing bacteria and short-chain fatty acid (SCFA) production, therefore, activating AMPK pathway-related genes through the gut-liver axis. High viscous DF has a greater lipid-lowering effect on geese, while medium viscous DF has preferable intestinal mucosal protection.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming 525000, China
| | - Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajia Shen
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shunxiang Wang
- Gold Coin Feedmill (Dong Guan) Co. Ltd, Dongguan 52300, China
| | - Yan Feng
- Gold Coin Feedmill (Dong Guan) Co. Ltd, Dongguan 52300, China
| | - Danyan He
- Gold Coin Feedmill (Dong Guan) Co. Ltd, Dongguan 52300, China
| | - Jiaqing Wang
- Guangdong Haida Group Co. Ltd., Guangzhou 510535, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Li H, Yin J, Tan B, Chen J, Zhang H, Li Z, Ma X. Physiological function and application of dietary fiber in pig nutrition: A review. ACTA ACUST UNITED AC 2021; 7:259-267. [PMID: 34258414 PMCID: PMC8245790 DOI: 10.1016/j.aninu.2020.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Dietary fiber (DF), divided into soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), has attracted increasing attention in the field of pig nutrition. Although DF reduces nutrient digestibility and inhibits energy deposition in most cases, fiber-rich feeds have been widely used in pig diets. This is not only because of lower feed costs, but also from the continuous discovery about the nutritional value of DF, mainly including the improvement of piglet intestinal health and sow reproductive performance. The addition timing has also been further considered, which potentially enables the nutritional value of DF to be accurately used in applicable pig models. Furthermore, fiber degrading enzymes have been shown to alleviate the anti-nutritional effects of DF and have ensured the improvement effect of fiber on intestinal health in young piglet models. However, the regulatory effect of fiber on pork quality is still unclear, which requires consideration of the wide range of fiber sources and the complexity of the basic diet composition, as well as the impact of pig breeds. Taken together, future research needs to gain more insight into the combined effects of SDF and IDF, processing methods, and addition timing to improve the nutritional value of DF, and further explore the physiological functions and regulatory mechanisms of DF fermentation products short-chain fatty acids in pigs.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhiqing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Luo Y, He J, Li H, Lan C, Cai J, Chen H, Tian G, Wang H, Wang Q, He J, Chen D, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo J, Wu A, Yan H. Wheat bran fermented by mixed fungal strains improves the digestibility of crude fiber and may benefit the gut health without impacting the growth performance in weaned pigs. Food Funct 2021; 12:2962-2971. [PMID: 33690750 DOI: 10.1039/d1fo00273b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study was conducted to compare the effect of raw (WB) or mixed fungi-fermented wheat bran (FWB) on the growth, nutrient digestibility and intestinal health in weaned piglets. After the preparation of FWB, twenty-one cross-bred weaned piglets (7.20 ± 0.5 kg) were separated into three groups for a 40-day trial. The pigs in the control group were fed a basal corn-soybean meal diet. For the other two groups, 8% of expanded corn in the basal diet was replaced by equivalent WB or FWB. Results showed that the content of main nutrients and the composition of dietary fiber in FWB improved compared to that for WB. The digestibility of fiber in pigs fed FWB improved (P < 0.05) compared to the control and/or WB without affecting their growth performance. Both WB and FWB decreased the conditional pathogen (Streptococcus) or/and E. coli virulence factor (STb) in the colon compared to control (P < 0.05), and the ratio of villus height to crypt depth (VCR) in jejunum increased (P < 0.05). The number of goblet cells, the expression of MUC-1 and pBD1 in jejunal mucosa, and the proportion of blood CD4+ T lymphocyte subset improved (P < 0.05) by FWB rather than WB. Furthermore, although only WB elevated (P < 0.05) the concentration of butyrate in the colon, both WB and FWB increased the number of butyrate-producing bacteria (P < 0.05) compared to the control. Thus, the main advantage of FWB over WB in weaned pigs is its improvement in fiber digestibility.
Collapse
Affiliation(s)
- Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. mSystems 2020; 5:5/5/e00645-20. [PMID: 32900872 PMCID: PMC7483512 DOI: 10.1128/msystems.00645-20] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lactate can be produced by many gut bacteria, but in adults its accumulation in the colon is often an indicator of microbiota perturbation. Using continuous culture anaerobic fermentor systems, we found that lactate concentrations remained low in communities of human colonic bacteria maintained at pH 6.5, even when dl-lactate was infused at 10 or 20 mM. In contrast, lower pH (5.5) led to periodic lactate accumulation following lactate infusion in three fecal microbial communities examined. Lactate accumulation was concomitant with greatly reduced butyrate and propionate production and major shifts in microbiota composition, with Bacteroidetes and anaerobic Firmicutes being replaced by Actinobacteria, lactobacilli, and Proteobacteria Pure-culture experiments confirmed that Bacteroides and Firmicutes isolates were susceptible to growth inhibition by relevant concentrations of lactate and acetate, whereas the lactate-producer Bifidobacterium adolescentis was resistant. To investigate system behavior further, we used a mathematical model (microPop) based on 10 microbial functional groups. By incorporating differential growth inhibition, our model reproduced the chaotic behavior of the system, including the potential for lactate infusion both to promote and to rescue the perturbed system. The modeling revealed that system behavior is critically dependent on the proportion of the community able to convert lactate into butyrate or propionate. Communities with low numbers of lactate-utilizing bacteria are inherently less stable and more prone to lactate-induced perturbations. These findings can help us to understand the consequences of interindividual microbiota variation for dietary responses and microbiota changes associated with disease states.IMPORTANCE Lactate is formed by many species of colonic bacteria, and can accumulate to high levels in the colons of inflammatory bowel disease subjects. Conversely, in healthy colons lactate is metabolized by lactate-utilizing species to the short-chain fatty acids butyrate and propionate, which are beneficial for the host. Here, we investigated the impact of continuous lactate infusions (up to 20 mM) at two pH values (6.5 and 5.5) on human colonic microbiota responsiveness and metabolic outputs. At pH 5.5 in particular, lactate tended to accumulate in tandem with decreases in butyrate and propionate and with corresponding changes in microbial composition. Moreover, microbial communities with low numbers of lactate-utilizing bacteria were inherently less stable and therefore more prone to lactate-induced perturbations. These investigations provide clear evidence of the important role these lactate utilizers may play in health maintenance. These should therefore be considered as potential new therapeutic probiotics to combat microbiota perturbations.
Collapse
|
11
|
Slama J, Schedle K, Wetscherek W, Pekar D, Schwarz C, Gierus M. Effects of soybean hulls and lignocellulose on performance, nutrient digestibility, microbial metabolites and immune response in piglets. Arch Anim Nutr 2020; 74:173-188. [PMID: 31933383 DOI: 10.1080/1745039x.2019.1704174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/07/2019] [Indexed: 01/20/2023]
Abstract
A feeding trial with 96 piglets was performed to investigate the effect of added soluble (SDF) and insoluble dietary fibre (IDF) sources on performance, apparent total tract digestibility (ATTD), concentration of microbial metabolites and pro-inflammatory marker genes as indicators for immune response. Piglets were allotted to four treatments (T): T1 control, T2 with soybean hulls (IDF/SDF: 8.35) and T3 and T4 with two different kinds of lignocellulose (IDF/SDF: >70). Diets were isofibrous for their value of total dietary fibre to underline the particular physicochemical properties of fibre sources. No differences were observed regarding average daily feed intake, average daily gain (ADG), feed conversion ratio and body weight, while T2 expressed higher ADG in the grower phase (day 14-54) vs. T3. Soybean hulls (T2) resulted in higher ATTD of dry matter and organic matter vs. T4; ether extract vs. T1 and neutral detergent fibre vs. T1, T2 and T3. The concentration of short chain fatty acids did not differ among treatments. Ileal digesta in T2 generated higher amounts of cadaverine vs. T3 and T4, likewise T1 vs. T4. Finally, no impact on immune response was detected. In conclusion, soybean hulls affected ATTD positively and lignocellulose prevented the formation of cadaverine, no overall direct response of SDF nor of IDF for the inclusion level were observed.
Collapse
Affiliation(s)
- Julia Slama
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Karl Schedle
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Wolfgang Wetscherek
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Daniela Pekar
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Christiane Schwarz
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Martin Gierus
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
12
|
Xu B, Zhu L, Fu J, Li Z, Wang Y, Jin M. Overall assessment of fermented feed for pigs: a series of meta-analyses. J Anim Sci 2020; 97:4810-4821. [PMID: 31712812 DOI: 10.1093/jas/skz350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
As an alternative to antimicrobial growth promoters, fermented feed (FF) has been continuously developed for two decades; however, its effects on feed, performance, digestibility, and meat quality of pigs have yet to be systematically and comprehensively evaluated. This study aimed to (i) quantitatively evaluate the effects of fermentation on nutritional components of feed stuffs; (ii) quantitatively evaluate the effects of FF on pig growth performance, digestibility, and meat quality; and (iii) explore the dose-effect relationship. From PubMed and Web of Science (searched range from January 1, 2000 to April 4, 2019), we collected 3,271 articles, of which 30 articles (3,562 pigs) were included in our meta-analysis. Our analysis revealed that fermentation significantly increased the CP content in feed (P < 0.05). For weaned piglets and growing pigs, FF significantly improved ADG, G:F, DM digestibility, N digestibility, and energy digestibility (P < 0.05). However, compared with the basal diet, FF had no significant effects on growth performance and nutrient digestibility in finishing pigs (P > 0.05). In the subgroup analyses, fermented ingredients increased the growth performance of weaned piglets and growing pigs, and fermented additives promoted the growth of pigs at all stages. The dose-effect analysis confirmed that the optimal doses of fermented ingredients and additives were 8% and 0.15%, respectively. Furthermore, FF had beneficial impacts on meat quality through increased lightness, redness, marbling and flavor and reduced drip loss (P < 0.05). In conclusions, FF improved growth performance and meat quality primarily due to its positive effects on nutritive value and utilization.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
13
|
Baby-SPIME: A dynamic in vitro piglet model mimicking gut microbiota during the weaning process. J Microbiol Methods 2019; 167:105735. [PMID: 31669849 DOI: 10.1016/j.mimet.2019.105735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
The study aimed to adapt the SHIME® model, developed to simulate human digestion and fermentation, to a baby-SPIME (baby Simulator of Pig Intestinal Microbial Ecosystem). What constitutes a unique feature of this model is its twofold objective of introducing an ileal microbial community and mimicking a dietary weaning transition. This model should then be ideally suited to test the dietary weaning strategies of piglets in vitro. Regarding the microbiota, the main phyla making up the model were Firmicutes, Bacteroidetes and Proteobacteria although Bacteroidetes decreased after inoculation (p = 0.043 in ileum, p = 0.021 in colon) and Delta-Proteobacteria were favoured (p = 0.083 in ileum, p = 0.043 in colon) compared to Gamma-Proteobacteria. The designed model led to a low representation of Bacilli - especially Lactobacillus sp. in the ileum and a weak representation of Bacteroidia in the proximal colon. However, Mitsuokella and Prevotella were part of the major genera of the model along with Bifidobacterium, Fusobacterium, Megasphaera and Bacteroides. As a result of weaning, two major changes - normally occurring in vivo - were detected in the system: firstly, Firmicutes diminished when Bacteroidetes increased particularly in the proximal colon; secondly, Bacteroides decreased and Prevotella increased (mean value for four runs). In terms of metabolite production, while a ratio acetate: propionate: butyrate of 60:26:14 was obtained in post-weaned colon, the expected inversion of the ratio propionate: butyrate in the post-weaned ileum was unfortunately not observed. To conclude, the so-called baby-SPIME model meets expectations regarding the resident microbiota of the proximal colon bioreactor and the metabolites produced thereof. In terms of the evolution of major groups of bacteria, the in vitro weaning process appeared to be successful. However, higher concentration of butyric acid would have been expected in ileum part of newly weaned piglets, as observed in vivo. The microbiota in the ileum bioreactor seemed in fact to act like a pre-colon. This suggests that microbial profile in ileum bioreactor had to be improved.
Collapse
|
14
|
Douny C, Dufourny S, Brose F, Verachtert P, Rondia P, Lebrun S, Marzorati M, Everaert N, Delcenserie V, Scippo ML. Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:188-196. [DOI: 10.1016/j.jchromb.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
|
15
|
Slama J, Schedle K, Wurzer GK, Gierus M. Physicochemical properties to support fibre characterization in monogastric animal nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3895-3902. [PMID: 30684273 PMCID: PMC6767034 DOI: 10.1002/jsfa.9612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND The aim of the study was to rank conventionally used fibre rich feeds for their physicochemical properties and detect possible correlation between analytical fibre determinations. A total of 22 samples were analysed for proximate fibre values, soluble dietary fibre (SDF), insoluble dietary fibre (IDF), crude protein (CP) and crude ash (CA). Physicochemical properties were determined in vitro by hydration capacity (HC) [water holding capacity (WHC), water binding capacity (WBC), swelling property (SwP)] and buffering capacity [linear buffering rate (LBR)]. RESULTS Fibre content and physicochemical properties varied markedly between the samples. HC was highest for beet pulp and lowest for rice and millet bran. Buffering capacity expressed minimum values for lignocelluloses and maximum values for rape seed hulls. The correlation of methods was positively between WBC, WHC and SwP (r ≤ 0.89; P ≤ 0.003) but not significant for HC and buffering capacity. SwP negatively correlated with crude fibre (CF), neutral detergent fibre (aNDFOM ) and IDF (r ≤ -0.48; P ≤ 0.05). WBC and SwP positively correlated with SDF (r ≤ 0.63; P ≤ 0.04). LBR was negatively correlated with CF, aNDFOM , IDF and total dietary fibre (r ≤ -0.55; P ≤ 0.02), but positively with CP (r = 0.53; P = 0.01). CONCLUSION The determination of physicochemical properties is applicable to rank fibre rich feeds, some correlations between fibre analytical measurements and physicochemical properties were detected. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Julia Slama
- Department of Agrobiotechnology, IFA‐Tulln, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology (TTE)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Karl Schedle
- Department of Agrobiotechnology, IFA‐Tulln, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology (TTE)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Gerhild K Wurzer
- Department of Agrobiotechnology, IFA‐Tulln, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology (TTE)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Martin Gierus
- Department of Agrobiotechnology, IFA‐Tulln, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology (TTE)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
16
|
Wang C, Ma S, Li L, Zheng X, Wang X. Effect of modified dietary fibre from wheat bran on the quality of noodle. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2017.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- C.C. Wang
- College of Grain Oil and Food science, Henan University of Technology, Lianhua Steet, 100, Zhengzhou 45000, China P.R
| | - S. Ma
- College of Grain Oil and Food science, Henan University of Technology, Lianhua Steet, 100, Zhengzhou 45000, China P.R
| | - L. Li
- College of Grain Oil and Food science, Henan University of Technology, Lianhua Steet, 100, Zhengzhou 45000, China P.R
| | - X.L. Zheng
- College of Grain Oil and Food science, Henan University of Technology, Lianhua Steet, 100, Zhengzhou 45000, China P.R
| | - X.X. Wang
- College of Grain Oil and Food science, Henan University of Technology, Lianhua Steet, 100, Zhengzhou 45000, China P.R
| |
Collapse
|
17
|
Teng PY, Chang CL, Huang CM, Chang SC, Lee TT. Effects of solid-state fermented wheat bran by Bacillus amyloliquefaciens and Saccharomyces cerevisiae on growth performance and intestinal microbiota in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1299597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Che Lun Chang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chung Ming Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shen Chang Chang
- Livestock Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Fleury MA, Le Goff O, Denis S, Chaucheyras-Durand F, Jouy E, Kempf I, Alric M, Blanquet-Diot S. Development and validation of a new dynamic in vitro model of the piglet colon (PigutIVM): application to the study of probiotics. Appl Microbiol Biotechnol 2017; 101:2533-2547. [DOI: 10.1007/s00253-017-8122-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
|
19
|
Kraler M, Ghanbari M, Domig KJ, Schedle K, Kneifel W. The intestinal microbiota of piglets fed with wheat bran variants as characterised by 16S rRNA next-generation amplicon sequencing. Arch Anim Nutr 2016; 70:173-89. [PMID: 27032029 DOI: 10.1080/1745039x.2016.1160534] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The intestinal microbiota of piglets fed with a Control diet low in dietary fibre and modified wheat bran variants as an additional source of insoluble dietary fibre was characterised. In this context, variances in the microbiota of three different gut segments were assessed. Wheat bran was either included in its native form or modified by fermentation and extrusion before added at 150 g/kg to a basal diet for 48 piglets (12 animals per treatment). Total DNA was extracted from digesta samples from the jejunum, the end of the ileum and the colon ascendens. Samples were prepared accordingly for subsequent sequencing with the Illumina MiSeq. The obtained results revealed distinct location-specific differences in microbial composition. While Firmicutes were most predominant in all three gut segments, Bacteroidetes were additionally found in the colon at high abundance. The parameters of alpha and beta diversity analysis showed significant differences (p < 0.01) between the colon and the other two gut segments. Specialised bacterial groups like Prevotella and Ruminococcaceae were among the most predominant ones found in the colon, as they possess cellulolytic properties to degrade (at least partially) non-starch polysaccharides, while their abundance was negligible in the jejunum and the ileum. Conversely, the genera Lactobacillus, Bifidobacterium and Veillonella, for example, were among the most predominant groups in the jejunum and ileum, while in the colon they were hardly found. Although statistical taxonomical evaluation, following p-value correction, did not reveal pronounced differences in abundance related to bran modification, alpha and beta diversity analysis showed an influence regarding the various feeding strategies applied. Based on these findings, a more in-depth view on intestinal microbial composition within the gastrointestinal tract of young pigs fed with low- and high-fibre diets was generated.
Collapse
Affiliation(s)
- Manuel Kraler
- a Institute of Food Science, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria.,b Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Mahdi Ghanbari
- a Institute of Food Science, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Konrad J Domig
- a Institute of Food Science, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Karl Schedle
- c Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, Department of Agrobiotechnology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Wolfgang Kneifel
- a Institute of Food Science, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria.,b Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Department of Food Science and Technology , University of Natural Resources and Life Sciences , Vienna , Austria
| |
Collapse
|
20
|
Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016; 7:3524-30. [DOI: 10.1039/c6fo00233a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Environmental exposure to pollutants such as heavy metals is responsible for various altered physiological functions that are detrimental to health.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Biological and Environmental Engineering
- Hefei University
- China
| | - Kaiyong Liu
- School of Public Health
- Anhui Medical University
- China
| | - Jie Shen
- School of Public Health
- Anhui Medical University
- China
| | - Yehao Liu
- School of Public Health
- Anhui Medical University
- China
| |
Collapse
|