1
|
Świerk S, Przybyło M, Flaga J, Szczepanik K, Białek W, Flieger P, Górka P. Effect of butyrate sources in a high-concentrate diet on rumen structure and function in growing rams. Animal 2024; 18:101285. [PMID: 39226778 DOI: 10.1016/j.animal.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Dietary butyrate is considered to have mostly positive impacts on the ruminal epithelium. However, its supplementation in a high-concentrate diet may not be justified as excessive ruminal butyrate may negatively affect the rumen. Furthermore, butyrate impact on the rumen may depend on its source. Thirty-two Świniarka growing rams (30.6 ± 2.5 kg; 11-14 months of age) were used to investigate the effect of a high-concentrate diet and sodium butyrate (SB) or tributyrin (TB) supplementation in a high-concentrate diet on the rumen structure and selected functions. The rams were allocated to four treatments and fed diets with: (1) low concentrate inclusion (22.5% of diet DM; L); (2) high concentrate inclusion (60% of diet DM; H); (3) H with SB (3.2% of diet DM; H+SB); and (4) H with TB (2.93% of diet DM; H+TB). The preplanned contrasts were used for treatment comparisons (L vs H treatments (H, H+SB, and H+TB), H vs H+SB, and H vs H+TB). The BW, BW gain and DM intake did not differ between treatments. In the atrium ruminis, epithelium thickness did not differ between the L and H treatments (P = 0.46), tended to be higher for H+SB than for H (P = 0.09) but did not differ between H+TB and H (P = 0.61). The expression of downregulated in adenoma was higher for L than for H treatments (P = 0.03) but was not affected by SB or TB supplementation (P ≥ 0.26). In the ventral rumen, the mucosa surface and epithelium thickness were lower for L than for H treatments (P < 0.01), were or tended to be higher for H+SB than for H (P ≤ 0.06) but did not differ between H+TB and H (P ≥ 0.26). The expression of monocarboxylate transporter 1 was lower for L than for H treatments (P = 0.02) but was not affected by SB or TB supplementation (P ≥ 0.28). The expression of putative anion transporter-1 and downregulated in adenoma did not differ between the L and H treatments (P ≥ 0.76); however, expression of the former tended to be higher and the latter tended to be lower for H+SB than for H (P ≤ 0.09), whereas no differences were observed between H+TB and H (P ≥ 0.14). In summary, SB supplementation, but not TB supplementation, in a high-concentrate diet stimulated ruminal epithelium growth and affected short-chain fatty acid transporters expression in the ruminal epithelium.
Collapse
Affiliation(s)
- S Świerk
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - J Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland
| | - W Białek
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - P Flieger
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - P Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Du S, Bu Z, You S, Bao J, Jia Y. Diversity of growth performance and rumen microbiota vary with feed types. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1004373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diet is a major factor in influencing the growth performance and the microbial community of lambs. This study aimed to investigate how diverse diets influence their growth performance and rumen microbiota. Ninety male lambs were randomly allocated into three groups in a completely randomized design with equal lambs: non-pelleted native grass hay (HA) as the control diet and pelleted native grass hay (GP) and pelleted native grass hay with concentrate (GPC) as experimental diets. The rumen fluid samples of the lambs in the HA, GP, and GPC groups were used to study rumen microbiota diversity through 16S rDNA high-throughput sequencing. In the present study, the final body weight, dry matter intake, and average daily gain differed significantly (p < 0.05) among the HA, GP, and GPC groups. Compared to the HA group, higher final body weight, dry matter intake, and average daily gain were found in the GP group. Similarly, better animal performance was observed in the GPC group than in the GP group. The principal coordinates analysis displayed that the composition of the rumen microbiota in the three groups was distinctly separated from each other. Bacteroidetes and Firmicutes were the dominant members of the community in the HA and GP groups, while Bacteroidetes, Firmicutes, and Proteobacteria became the predominant members in the GPC group. The comparison among these groups showed significant (p < 0.05) differences in Rikenellaceae_RC9_gut_group, Prevotella_1, Ruminococcaceae_NK4A214_group, and Succiniclasticum. These results suggest that the GP and GPC diets are more beneficial for growth performance than the HA diet and also indicate that the rumen microbiota varied in response to different feed types. In conclusion, these results could provide strategies to influence rumen microbiota for better growth and a healthier ecosystem on the Mongolian Plateau and lay the theoretical groundwork for feeding the pelleted native grass diet.
Collapse
|
3
|
Przybyło M, Flaga J, Clauss M, Szczepanik K, Miltko R, Bełżecki G, Kowalski ZM, Górka P. Increased intake of mono- and disaccharides by Reeves's muntjac (Muntiacus reevesi). Effect on gastrointestinal tract structure and function and blood parameters. J Anim Physiol Anim Nutr (Berl) 2022; 106:922-938. [PMID: 35587535 DOI: 10.1111/jpn.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effect of an increased mono- and disaccharide (MD) intake on selected functions and structure of the gastrointestinal tract (GIT), and selected blood parameters in Reeves's muntjac (Muntiacus reevesi), a small browsing ruminant. Eighteen male muntjacs were fed diets consisting of lucerne (ad libitum), a high fibre pellet (100 g/day) and wheat bran (30 g/day) without (MD0) or with addition of 10 or 20 g of glucose, fructose and sucrose mixture/day (MD10 and MD20, respectively) for 14 days. MD dosages were set to increase intake of these saccharides by 25% and 50% relative to MD0, which resulted in a range of water-soluble carbohydrate content in the consumed dry matter from 7% to 12%. Compared to MD0 animals, MD20 animals had a lower dry matter intake, a higher MD concentrations in the reticulorumen (RR), abomasal and small intestinal digesta, higher ruminal butyrate concentration, higher SGLT1 expression in the epithelium of proximal jejunum, higher plasma glucose, lower RR tissue weight but greater caecal tissue weight (p ≤ 0.05), and had or tended to have shorter papillae and lower mucosa surface area in the Atrium ruminis (by 44%; p = 0.02 and p = 0.10, respectively); MD10 animals tended to have higher MD concentrations in the abomasal and small intestinal digesta (p ≤ 0.10), and a higher amylolytic activity (p = 0.02) as well as a tendency to lower xylanolytic activity in the RR digesta (p = 0.06). MD supplementation did not affect ruminal pH. In conclusion, low to moderate increase of MD intake increased MD concentrations in the RR, abomasal and intestinal digesta, and SGLT1 expression in intestinal epithelium, suggesting incomplete fermentation of those saccharides in the RR. MD supplementation dose-dependently affects structure of GIT in Reeves's muntjac.
Collapse
Affiliation(s)
- Marcin Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Jadwiga Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Kinga Szczepanik
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Renata Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Grzegorz Bełżecki
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Paweł Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
4
|
Effect of pelleted alfalfa or native grass total mixed ration on the rumen bacterial community and growth performance of lambs on the Mongolian Plateau. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Poier G, Terler G, Klevenhusen F, Sharma S, Zebeli Q. Replacing concentrates with a high-quality hay in the starter feed of dairy calves: II. Effects on the development of chewing and gut fermentation, and selected systemic health variables. J Dairy Sci 2022; 105:3113-3128. [DOI: 10.3168/jds.2021-21346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
|
6
|
Terler G, Poier G, Klevenhusen F, Zebeli Q. Replacing concentrates with a high-quality hay in the starter feed in dairy calves: I. Effects on nutrient intake, growth performance, and blood metabolic profile. J Dairy Sci 2022; 105:2326-2342. [PMID: 35086709 DOI: 10.3168/jds.2021-21078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Concentrate-rich starter feeds are commonly fed to dairy calves to stimulate early solid feed intake and growth performance; yet, starter feeds lacking in forage fiber may jeopardize gut development. This research primarily aimed to test a complete or partial replacement of concentrates with hay of different qualities in the starter feed on nutrient intake, growth performance, apparent total-tract digestibility (ATTD) of nutrients, and blood metabolites in dairy calves. Immediately after birth, 40 Holstein Friesian calves were randomly allocated to 1 of 4 starter diets, which differed in hay quality and concentrate inclusion [MQH = 100% medium-quality hay, 9.4 MJ of metabolizable energy (ME), 149 g of crude protein (CP), 522 g of neutral detergent fiber (NDF)/kg of dry matter (DM); HQH = 100% high-quality hay, 11.2 MJ of ME, 210 g of CP, 455 g of NDF/kg of DM; MQH+C = 30% medium-quality hay + 70% starter concentrate; HQH+C = 30% high-quality hay + 70% starter concentrate]. The concentrate consisted mainly of grains, oilseeds, and mineral supplements (13.5 MJ of ME, 193 g of CP, 204 g of NDF/kg of DM). Calves were used in the experiment from d 1 to 99 of life. During the first 4 wk, all calves were fed acidified whole milk ad libitum, and afterward they were gradually weaned from wk 5 to 12. Calves had ad libitum access to their starter diets and water throughout the experiment. Milk, water, and solid feed intake was recorded daily, live weight was measured once a week, and blood samples were collected on d 1, 3, 7, 21, 49, 77, and 91 and analyzed for selected metabolites. The ATTD was measured in wk 14 of life. Total DM intake and daily weight gain of calves were not affected by the starter feed during the first 8 wk of life. However, from wk 9 to 14, calves fed the MQH diet had lower DM, ME, and CP intake and gained less weight than calves from the other experimental groups. Feeding the HQH diet resulted in similar CP and ME intake and growth performance compared with calves receiving diets containing concentrates. Furthermore, feeding the HQH diet improved the ATTD of NDF, resulting in similar ATTD of organic matter with the HQH+C and MQH+C groups. Interestingly, calves fed the HQH+C diet showed less sorting for concentrate, compared with the MQH+C group. Concentration of blood metabolites, including glucose, lactate, insulin, nonesterified fatty acids, triglycerides, and total protein, did not differ after the first week of life. However, serum β-hydroxybutyrate was higher in calves fed the HQH diet starting from wk 11. Both groups fed the hay-only diets maintained higher cholesterol levels after weaning compared with the groups fed hay-concentrate mixtures. In conclusion, feeding high-quality hay can fully replace starter concentrates in the feeding of dairy calves without adverse effects on performance during the rearing period, while increasing forage fiber intake and utilization, which enhanced ruminal ketogenesis and cholesterogenesis around weaning. Further research is needed to evaluate long-term effects of feeding high-quality hay on health and development of dairy calves, especially in terms of the observed improvements in ruminal ketogenesis and cholesterogenesis around weaning.
Collapse
Affiliation(s)
- G Terler
- Institute for Livestock Research, Agricultural Research and Education Centre Raumberg-Gumpenstein, 8952 Irdning-Donnersbachtal, Austria.
| | - G Poier
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - F Klevenhusen
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, 10589 Berlin, Germany
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
7
|
Klevenhusen F, Zebeli Q. A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5737-5746. [PMID: 34091911 DOI: 10.1002/jsfa.11358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Cows are adapted to degrade structural plant carbohydrates (SC), such as cellulose and hemicelluloses, prevailing in grasses. Yet, the need for energy-dense diets in many intensive dairy production systems has shifted the dairy cattle's diet from SC-rich to high levels of starch. Feeding of starch-rich diets increases the risk of ruminal acidosis in cows, and feeding starch in the form of grains intensifies the competition over cereal grains and arable land among different livestock species, as well as between livestock and humans. Besides cellulose and hemicelluloses, grasses are also often rich in water-soluble carbohydrates (WSC), which comprise mono-, di-, oligo- and polysaccharides (fructans). Although the ruminal fermentation profile of mono- and disaccharides resembles that of starch, the degradation of oligo- and polysaccharides is slower, and their fermentation elicits a rather protecting effect on ruminal pH. When harvested in an early phase (i.e. ear emergence), grass hay and silages can reach WSC levels up to 150-200 g kg-1 dry matter and energy levels close to starch-rich diets, allowing a significantly reduced inclusion of concentrate supplements. By doing so, this will enhance both rumen health and the sustainability of milk production. However, because the WSC are chemically very heterogeneous, the patterns and extent of their ruminal fermentation are difficult to predict without a clear analytical characterization. This review article aims to summarize both the benefits and potentials, as well as the challenges, with respect to using WSC-rich feedstuffs in the nutrition of dairy cattle and their effects on ruminal fermentation characteristics and milk production. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fenja Klevenhusen
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Przybyło M, Dander S, Krawiec K, Kloska A, Kowalski ZM, Górka P. Effect of sugar and starch supplementation on feed intake and nutrient digestibility in addax (Addax nasomaculatus) and Reeves's muntjac (Muntiacus reevesi). J Anim Physiol Anim Nutr (Berl) 2021; 106:194-204. [PMID: 34013528 DOI: 10.1111/jpn.13568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Two studies were conducted to determine the effect of the supplementation of sugar, starch or both on feed, nutrient and energy intake and total tract digestibility in four adult female addax (Addax nasomaculatus) and four adult male Reeves's muntjac (Muntiacus reevesi) - representatives of grazing and browsing ruminants, respectively. Studies in both species were conducted according to 4 × 4 Latin Square Design. Animals had free access to meadow hay (addax) or dehydrated chopped lucerne (muntjac), and were fed a restricted amount of a 'basal diet' consisting of: (1) wheat bran; (2) wheat bran and sucrose (source of sugar); (3) wheat bran and wheat (source of starch); or (4) wheat bran, sucrose and wheat. The amounts of supplemental sucrose and wheat were set to account for 2% and 15%, respectively, of dry matter (DM) consumed. There was no effect of the ~2% sugar supplementation on DM intake of hay by addax, while the ~10% starch supplementation reduced DM intake of hay by 13% (p < 0.01); total DM intake (of hay and the basal diet) was not affected neither by sugar nor starch supplementation. When the diet for addax included wheat, this resulted in a greater intake of crude protein by 15%, lower intake of ADF by 9%, and greater crude protein digestibility by 10% (p ≤ 0.05). The ~2% sugar supplementation did not affect intake of lucerne and total DM intake by muntjac, but the ~10% starch supplementation decreased DM intake of lucerne by 25% (p < 0.01), total DM intake by 7% (p = 0.02) and intake of all nutrients (p ≤ 0.10). In summary, if high intake of roughages by captive ruminants is fundamental for their gastrointestinal functions and health, then starchy feeds supplementation should be limited, as they have an especially negative impact on roughage intake.
Collapse
Affiliation(s)
- Marcin Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Sara Dander
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Karolina Krawiec
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | | | - Zygmunt M Kowalski
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Paweł Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
9
|
Haselmann A, Wenter M, Fuerst-Waltl B, Zollitsch W, Zebeli Q, Knaus W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Khiaosa-ard R, Kleefisch MT, Zebeli Q, Klevenhusen F. Milk fatty acid composition reflects metabolic adaptation of early lactation cows fed hay rich in water-soluble carbohydrates with or without concentrates. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
SOUSA RTD, CÔNSOLO NRB, FERRARI VB, MARQUES JA, MAGALHÃES JD, SILVA LFP. Replacing corn with ground or pelleted citrus pulp in diets of Nellore heifers. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2020. [DOI: 10.1590/s1519-9940210262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Citrus pulp can replace corn in feedlot diets in order to decrease metabolic problems by reducing formation of lactate ruminal. However, while eating, animals can easily select against pelleted citrus pulp due to the greater particle size of the pellet. Therefore, grinding citrus pulp pellet can be an alternative to decrease particle selectivity. This study was realized to evaluate the replacement of ground corn by pelleted citrus pulp and ground citrus pulp on animal performance, sorting index, and feeding behavior of Nellore heifers. Thirty-six Nellore heifers were randomly assigned to three treatments: control diet based on ground corn (GC), partial replacement of GC by ground citrus pulp (GCP), and partial replacement of GC by pelleted citrus pulp (PCP). . Heifers fed with the GC diet had higher final body weight (BW), average daily gain (ADG), and dry matter intake (DMI) compared with heifers fed with citrus pulp (P < 0.05). Ground citrus pulp increased DMI and fiber intake compared with the PCP group (P < 0.05). Heifers fed with PCP and GCP sorted for diet particles from 8 to 19 mm and selected particles with less than 1.18 mm (P < 0.05). Thus, the ground citrus pulp is better than pelleted citrus pulp due to higher feed intake and ADG, in consequence of lower selection index.
Collapse
|
12
|
Przybyło M, Clauss M, Ortmann S, Kowalski ZM, Górka P. The effect of fructose supplementation on feed intake, nutrient digestibility and digesta retention time in Reeves's muntjac (Muntiacus reevesi). J Anim Physiol Anim Nutr (Berl) 2019; 103:1684-1693. [PMID: 31441143 DOI: 10.1111/jpn.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
The aim of the study was to determine the effect of fructose supplementation in the diet on feed intake, nutrient digestibility and digesta retention time in Reeves's muntjac (Muntiacus reevesi), a browsing cervid. In Experiment 1, six adult males of Reeves's muntjac were used in a replicated 3 × 3 Latin square design and fed a diet consisting of dehydrated chopped lucerne (ad libitum), high-fibre pellet (120 g/day) and wheat bran (30 g/day) without (F0) or with addition of 12 and 24 g fructose/day (F12 and F24, respectively). In Experiment 2, the same six adult muntjacs were used in crossover design and fed F0 or F12. Doses of supplemental fructose were set to increase intake of water-soluble carbohydrates (WSC; ≈40 g/day; ≈8% of WSC in consumed dry matter [DM]) by 25 and 50% relative to F0. Feed intake was controlled daily (Experiment 1 and 2) and total tract digestibility and digesta retention time were determined (Experiment 2). In Experiment 1, DM intake of chopped dehydrated lucerne decreased with fructose supplementation (F0 vs. F12 and F24; p = .01) but was not different between F12 and F24 (p = .76). Total DM intake was also not different between treatments (p ≥ .13). In Experiment 2, DM intake of lucerne, total DM intake and nutrient digestibility was not affected by fructose supplementation (p ≥ .17), but mean retention time of long particles in the whole GIT tended to be longer for F12 compared to F0 (p = .09). Under conditions of the current study, additional fructose intake (resulting in a range of WSC content in consumed DM from 8.6% to 13%) had only minor impact on feed intake and investigated functions of the gastrointestinal tract of Reeves's muntjac.
Collapse
Affiliation(s)
- Marcin Przybyło
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, Krakow, Poland
| | - Marcus Clauss
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, Krakow, Poland
| | - Paweł Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
13
|
Raabis S, Li W, Cersosimo L. Effects and immune responses of probiotic treatment in ruminants. Vet Immunol Immunopathol 2019; 208:58-66. [PMID: 30712793 PMCID: PMC6526955 DOI: 10.1016/j.vetimm.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Gut microbial colonization and establishment are vital to ruminant health and production. This review article focuses on current knowledge and methods used to understand and manipulate the gut microbial community in ruminant animals, with a special focus on probiotics treatment. This review highlights the most promising of studies in this area, including gut microbial colonization and establishment, effect of gastrointestinal tract microbial community on host mucosal innate immune function, impact of feeding strategies on gut microbial community, current probiotic treatments in ruminants, methods to manipulate the gut microbiota and associated antimicrobial compounds, and models and cell lines used in understanding the host immune response to probiotic treatments. As a lot of work in this area was done in humans and mice, this review article also includes up-to-date knowledge from relevant studies in human and mouse models. This review is a useful resource for scientists working in the areas of ruminant nutrition and health, and to researchers investigating the microbial ecology and its relation to animal health.
Collapse
Affiliation(s)
- Sarah Raabis
- School of Veterinary Medicine, University of Wisconsin-Madison, United States
| | - Wenli Li
- Dairy Forage Research Center, Agricultural Research Service, USDA, 1925 Linden Drive, Madison, WI, 53706, United States.
| | - Laura Cersosimo
- University of Florida, Department of Animal Sciences, Gainesville, FL, United States
| |
Collapse
|
14
|
Klevenhusen F, Kleefisch MT, Zebeli Q. Feeding hay rich in water-soluble carbohydrates improves ruminal pH without affecting rumination and systemic health in early lactation dairy cows. J Anim Physiol Anim Nutr (Berl) 2018; 103:466-476. [DOI: 10.1111/jpn.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/24/2018] [Accepted: 11/25/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Fenja Klevenhusen
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds; University of Veterinary Medicine Vienna; Vienna Austria
| | - Maria-Theresia Kleefisch
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds; University of Veterinary Medicine Vienna; Vienna Austria
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds; University of Veterinary Medicine Vienna; Vienna Austria
| |
Collapse
|
15
|
Kleefisch MT, Zebeli Q, Humer E, Gruber L, Klevenhusen F. Effects of feeding high-quality hay with graded amounts of concentrate on feed intake, performance and blood metabolites of cows in early lactation. Arch Anim Nutr 2018; 72:290-307. [DOI: 10.1080/1745039x.2018.1474004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria-Theresia Kleefisch
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elke Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Leonhard Gruber
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Institute of Livestock Research, Irdning, Austria
| | - Fenja Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
16
|
Changes in the Rumen Epithelial Microbiota of Cattle and Host Gene Expression in Response to Alterations in Dietary Carbohydrate Composition. Appl Environ Microbiol 2018; 84:AEM.00384-18. [PMID: 29654184 DOI: 10.1128/aem.00384-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
The inclusion of high-quality hay (HQH), in place of concentrates, shifts dietary carbohydrate intake, and the extent to which these shifts effect epimural microbiota and epithelial gene expression of the rumen has not yet been evaluated. Eight ruminally cannulated nonlactating Holstein cows were used in a replicated 4 by 4 Latin square design with four dietary treatments containing HQH, with either 0% concentrate/100% HQH (100HQH), 25% concentrate/75% HQH (75HQH), or 40% concentrate/60% HQH (60HQH). The fourth group (control [CON]) was fed 60% normal fiber-rich hay and 40% concentrate. The data showed that measures of diversity for the rumen epimural population, specifically the Shannon (P = 0.004) and Simpson (P = 0.003) indices, decreased with increasing levels of HQH in the diet. The feeding of HQH shifted the epimural population from predominantly Firmicutes to Proteobacteria Phylogenetic analysis revealed that HQH feeding markedly shifted the abundance of Campylobacter spp. from 7.8 up to 33.5% (P < 0.001), with greater ingestion of protein (r = 0.63) and sugars (r = 0.65) in HQH diet being responsible for this shift. The expression of genes targeting intracellular pH regulation, barrier function, and nutrient uptake of rumen epithelium remained stable regardless of the carbohydrate source. In conclusion, the data suggest strong alterations of the ruminal epimural microbiota in response to changes in the nutritive patterns of the diet. Further research is warranted to evaluate the long-term effects of these significant microbial changes on rumen health and food safety aspects in cattle at a transcriptional level.IMPORTANCE Feeding of forages versus starchy concentrates is a highly debated topic. Hay is believed to be healthier and more ecological sustainable for cattle than are concentrates, although the effects of feeding hay with enhanced sugar and protein content on epimural microbiota and host gene expression have not yet been evaluated. This research provides a report of the role of feeding hay with increased sugar and protein content in place of starchy concentrates in altering epimural microbiota and in generating a host response. Our research shows that the addition of high-quality hay to dairy rations shifted nutrient intake, resulting in strong alterations in the epimural microbiota in cattle. This work provides a background for further long-term research regarding the effects of feeding practices on the host-microbiome interaction and its role in rumen health and food safety in cattle.
Collapse
|
17
|
Schmitz R, Schnabel K, von Soosten D, Meyer U, Spiekers H, Rehage J, Dänicke S. The effects of energy concentration in roughage and allowance of concentrates on performance, health and energy efficiency of pluriparous dairy cows during early lactation. Arch Anim Nutr 2018; 72:100-120. [DOI: 10.1080/1745039x.2018.1428417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rolf Schmitz
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Karina Schnabel
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Hubert Spiekers
- Institute of Animal Nutrition and Feed Management, Bavarian State Research Center of Agriculture (LfL), Poing, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hanover, Hannover, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
18
|
Humer E, Petri RM, Aschenbach JR, Bradford BJ, Penner GB, Tafaj M, Südekum KH, Zebeli Q. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J Dairy Sci 2017; 101:872-888. [PMID: 29153519 DOI: 10.3168/jds.2017-13191] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
Rumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health. The term "subacute ruminal acidosis" (SARA) is often used as a synonym for poor rumen health. In this review, we first describe the physiological demands of cattle for dietary physically effective fiber. We also provide background information on the importance of enhancing salivary secretions and short-chain fatty acid absorption across the stratified squamous epithelium of the rumen; thus, preventing the disruption of the ruminal acid-base balance, a process that paves the way for acidification of the rumen. On-farm evaluation of dietary fiber adequacy is challenging for both nutritionists and veterinarians; therefore, this review provides practical recommendations on how to evaluate the physical effectiveness of the diet based on differences in particle size distribution, fiber content, and the type of concentrate fed, both when the latter is part of total mixed ration and when it is supplemented in partial mixed rations. Besides considering the absolute amount of physically effective fiber and starch types in the diet, we highlight the role of several feeding management factors that affect rumen health and should be considered to control and mitigate SARA. Most importantly, transitional feeding to ensure gradual adaptation of the ruminal epithelium and microbiota; monitoring and careful management of particle size distribution; controlling feed sorting, meal size, and meal frequency; and paying special attention to primiparous cows are some of the feeding management tools that can help in sustaining rumen health in high-producing dairy herds. Supplementation of feed additives including yeast products, phytogenic compounds, and buffers may help attenuate SARA, especially during stress periods when the risk of a deficiency of physically effective fiber in the diet is high, such as during early lactation. However, the usage of feed additives cannot fully compensate for suboptimal feeding management.
Collapse
Affiliation(s)
- E Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - R M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - G B Penner
- Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada, S7N 5A8
| | - M Tafaj
- Department of Animal Science, Agriculture University of Tirana, Tirana 1000, Albania
| | - K-H Südekum
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|