1
|
Tourniquet use for extremity fractures has no adverse effect on number of ventilator days for patients who are treated with reamed femoral or tibial shaft nails. Injury 2020; 51:2692-2697. [PMID: 32768139 DOI: 10.1016/j.injury.2020.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Concern exists regarding the pulmonary effects of using tourniquets for secondary extremity fractures in patients also undergoing intramedullary nail (IMN) fixation of femoral or tibial shaft fractures. Our hypothesis was that tourniquet use would be associated with increased ventilator days. METHODS At a Level I trauma center, we conducted a retrospective review of 1966 patients with 2018 fractures (1070 femoral shaft and 948 tibial shaft) treated with IMN from December 2006 to September 2014. Medical record review and bivariate and multiple variable regression analyses were conducted, and the main outcome measurement was number of ventilator days. RESULTS No statistically significant negative association was found between use of a tourniquet and number of ventilator days in the femoral or tibial fracture group. Use of tourniquets in the upper extremities showed a statistically significant decrease in amount of ventilator days in the femoral group (-2.2 days, p = 0.003) but no association in the tibial group (1.1 days, p = 0.36). Use of tourniquets concurrently in both upper and lower extremities of both femoral and tibial groups also had a protective effect (-6.8 days, p < 0.001 and -2.3 days, p = 0.009, respectively). Stratified and sensitivity analyses (to account for effects of mortality and missing data) showed consistently similar results. CONCLUSION Tourniquet use for secondary extremity fractures, in patients also undergoing IMN fixation for femoral or tibial shaft fractures, was not associated with an increased number of ventilator days. A potential protective effect of tourniquet use was shown in patients with upper extremity fractures and in those with both upper and lower extremity fractures. LEVEL OF EVIDENCE Therapeutic Level III (Retrospective cohort study).
Collapse
|
2
|
Oliveira LRAD, Albuquerque ADO, Silva CISM, Silva JM, Casadevall MQDFC, Azevedo OGRD, Albuquerque VLDSP, Vasconcelos PRLD. Preconditioning with L-Ala-Gln reduces the expression of inflammatory markers (TNF-α, NF-κB, IL-6 and HO-1) in an injury animal model of cerebrovascular ischemia in Meriones unguiculatus (gerbils). Acta Cir Bras 2020; 35:e202000601. [PMID: 32696813 PMCID: PMC7373374 DOI: 10.1590/s0102-865020200060000001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/23/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose To evaluate the neuroprotective effect of L-alanyl-glutamine in a gerbil model of brain ischemia-reperfusion injury based on immunohistochemical quantification of pro-inflammatory and cell activation biomarkers (TNF-α, NF-κB, IL-6 and HO-1). Methods Male gerbils weighing 100-180 g were pretreated with either 0.75 g/kg L-Ala-Gln (n=18) or 2.0 mL saline (n=18) administered i.v. 30 minutes before the bilateral ligation of the common carotid artery during 15 min and then the ligation was removed. Under anesthesia with urethane, brain tissue was harvested at 0 min (T0), 30 min (T30) and 60 min (T60) after reperfusion. The tissue was embedded in 10% formalin overnight and 4-μm sections were prepared for immunostaining with monoclonal antibodies. Immunostained cells were counted by optical microscopy. The statistical analysis used mean values based on 4 sections. Results The pretreatment with L-Ala-Gln animal group 1 demonstrated significantly lower levels of TNF-α, NF-κB and IL-6. On the other hand, the levels of HO-1 were significantly higher, suggesting a protective role in model of brain ischemia-reperfusion injury. Conclusion These findings suggest a protective effect of L-Ala-Gln by decreasing levels of TNF-alpha, IL-6 and NF-κB and Increasing levels of HO-1.
Collapse
|
3
|
Pretreatment with Fish Oil-Based Lipid Emulsion Modulates Muscle Leukocyte Chemotaxis in Murine Model of Sublethal Lower Limb Ischemia. Mediators Inflamm 2017; 2017:4929346. [PMID: 28182087 PMCID: PMC5274663 DOI: 10.1155/2017/4929346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of a fish oil- (FO-) based lipid emulsion on muscle leukocyte chemotaxis and inflammatory responses in a murine model of limb ischemia-reperfusion (IR) injury. Mice were assigned randomly to 1 sham (sham) group, 2 ischemic groups, and 2 IR groups. The sham group did not undergo the ischemic procedure. The mice assigned to the ischemic or IR groups were pretreated intraperitoneally with either saline or FO-based lipid emulsion for 3 consecutive days. The IR procedure was induced by applying a 4.5 oz orthodontic rubber band to the left thigh above the greater trochanter for 120 min and then cutting the band to allow reperfusion. The ischemic groups were sacrificed immediately while the IR groups were sacrificed 24 h after reperfusion. Blood, IR-injured gastrocnemius, and lung tissues were collected for analysis. The results showed that FO pretreatment suppressed the local and systemic expression of several IR-induced proinflammatory mediators. Also, the FO-pretreated group had lower blood Ly6ChiCCR2hi monocyte percentage and muscle M1/M2 ratio than the saline group at 24 h after reperfusion. These findings suggest that FO pretreatment may have a protective role in limb IR injury by modulating the expression of proinflammatory mediators and regulating the polarization of macrophage.
Collapse
|
4
|
Glutamine Modulates Changes in Intestinal Intraepithelial γδT-Lymphocyte Expressions in Mice With Ischemia/Reperfusion Injury. Shock 2016; 44:77-82. [PMID: 25784526 DOI: 10.1097/shk.0000000000000375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated the effect of glutamine (GLN) on expressions of small intestinal intraepithelial lymphocyte (IEL) γδT-cell proinflammatory cytokines and apoptotic regulatory factor genes in a mouse model of hindlimb ischemia/reperfusion (IR) injury. Mice were assigned to a normal control group and three IR groups. Mice in the normal control group received no ischemia treatment, whereas IR groups had hindlimb ischemia for 90 min with subsequent 0 (IR0) or 24 h (IR24) of reperfusion. The IR0 group was sacrificed immediately after reperfusion. The IR24S group was injected with saline, and the IR24G group was given 0.75 g GLN/kg of body weight once via a tail vein before reperfusion. The IR24 groups were sacrificed 24 h after reperfusion. Small intestinal IEL γδT cells of the animals were isolated for further analysis. Results showed that IR injury resulted in lower small intestinal IEL γδT-cell percentages and higher proinflammatory cytokine messenger RNA expressions of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α by IEL γδT cells. Compared with the IR24S group, the IR24G group had a higher IEL γδT-cell percentage. Multiples of change of messenger RNA of proliferation gene expressions of the antiapoptotic Bcl-xl (B-cell lymphoma-extra large) and IL-7 receptor in the IR24G group were higher, whereas expressions of the keratinocyte growth factor and bacterial lectin regenerating islet-derived (Reg)IIIγ were lower in IEL γδT cells. Histological findings also showed that damage to the intestinal mucosa was less severe in the IR group with GLN. These results indicated that a single dose of GLN administered before reperfusion maintained small intestinal IEL γδT cell populations and reduced expressions of intestinal inflammatory cytokines, which may have consequently ameliorated the severity of IR-induced small intestinal epithelial injury.
Collapse
|
5
|
Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, Yeh SL. Glutamine Administration After Sublethal Lower Limb Ischemia Reduces Inflammatory Reaction and Offers Organ Protection in Ischemia/Reperfusion Injury. JPEN J Parenter Enteral Nutr 2015; 40:1122-1130. [PMID: 26059902 DOI: 10.1177/0148607115587949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study investigated the effects of intravenous glutamine (GLN) administration on the expression of adhesion molecules and inflammatory mediators in a mice model of hind limb ischemia/reperfusion (IR) injury. METHODS There were 3 IR groups and 1 normal control (NC) group. The NC group did not undergo the IR procedure. Mice in the IR groups underwent 90 minutes of limb ischemia followed by a variable period of reperfusion. Ischemia was performed by applying a 4.5-oz orthodontic rubber band to the left thigh. Mice in one IR group were sacrificed immediately after reperfusion. The other 2 IR groups were injected once with either 0.75 g GLN/kg body weight (G group) or an equal volume of saline (S group) via tail vein before reperfusion. Mice in the S and G groups were subdivided and sacrificed at 4 or 24 hours after reperfusion. RESULTS IR enhanced the inflammatory cytokine gene expressions in muscle. Also, plasma interleukin (IL)-6 levels, blood neutrophil percentage, and the adhesion molecule and chemokine receptors expressed by leukocytes were upregulated after reperfusion. The IR-induced muscle inflammatory mediator gene expressions, blood macrophage percentage, and plasma IL-6 concentration had declined at an early or a late phase of reperfusion when GLN was administered. Histologic findings also found that remote lung injury was attenuated during IR insult. CONCLUSIONS A single dose of GLN administration immediately after sublethal lower limb ischemia reduces the inflammatory reaction locally and systemically; this may offer local and distant organ protection in hind limb IR injury.
Collapse
Affiliation(s)
- Yao-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Juey-Ming Shih
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Hou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Li Yeh
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| | - Sung-Ling Yeh
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Chen CM, Cheng KC, Li CF, Zhang H. The protective effects of glutamine in a rat model of ventilator-induced lung injury. J Thorac Dis 2015; 6:1704-13. [PMID: 25589963 DOI: 10.3978/j.issn.2072-1439.2014.11.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mortality rate of patients with acute respiratory distress syndrome (ARDS) is still high despite the use of protective ventilatory strategies. We sought to examine the pharmacological effects of glutamine (GLN) in a two-hit model of endotoxin-induced inflammation followed by ventilator-induced lung injury (VILI). We hypothesized that the administration of GLN ameliorates the VILI. METHODS Sprague-Dawley rats were anesthetized and given lipopolysaccharide (LPS) intratracheally as a first hit to induce lung inflammation, followed 24 h later by a second hit of mechanical ventilation (MV) with either low tidal volume (6 mL/kg) with 5 cmH2O of positive end-expiratory pressure (PEEP) or high tidal volume (22 mL/kg) with zero PEEP for 4 h. GLN or lactated Ringer's solution as the placebo was administered intravenously 15 min prior to MV. RESULTS In the LPS-challenged rats ventilated with high tidal volume, the treatment with GLN improved lung injury indices, lung mechanics and cytokine responses compared with the placebo group. CONCLUSIONS The administration of GLN given immediately prior to MV may be beneficial in the context of reducing VILI.
Collapse
Affiliation(s)
- Chin-Ming Chen
- 1 Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan ; 2 Department of Critical Care Medicine, Chi-Mei Medical Center and Chang Jung Christian University, Tainan, Taiwan ; 3 Section of Respiratory Care, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan ; 4 Department of Safety Health and Environment Engineering, Chung Hwa University of Medical Technology, Tainan, Taiwan ; 5 Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan ; 6 Keenan Research Center for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Kuo-Chen Cheng
- 1 Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan ; 2 Department of Critical Care Medicine, Chi-Mei Medical Center and Chang Jung Christian University, Tainan, Taiwan ; 3 Section of Respiratory Care, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan ; 4 Department of Safety Health and Environment Engineering, Chung Hwa University of Medical Technology, Tainan, Taiwan ; 5 Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan ; 6 Keenan Research Center for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Chien-Feng Li
- 1 Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan ; 2 Department of Critical Care Medicine, Chi-Mei Medical Center and Chang Jung Christian University, Tainan, Taiwan ; 3 Section of Respiratory Care, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan ; 4 Department of Safety Health and Environment Engineering, Chung Hwa University of Medical Technology, Tainan, Taiwan ; 5 Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan ; 6 Keenan Research Center for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- 1 Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan ; 2 Department of Critical Care Medicine, Chi-Mei Medical Center and Chang Jung Christian University, Tainan, Taiwan ; 3 Section of Respiratory Care, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan ; 4 Department of Safety Health and Environment Engineering, Chung Hwa University of Medical Technology, Tainan, Taiwan ; 5 Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan ; 6 Keenan Research Center for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Lai CC, Liu WL, Chen CM. Glutamine attenuates acute lung injury caused by acid aspiration. Nutrients 2014; 6:3101-16. [PMID: 25100435 PMCID: PMC4145297 DOI: 10.3390/nu6083101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023] Open
Abstract
Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer's solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.
Collapse
Affiliation(s)
- Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying Dist., Tainan 73657 Taiwan.
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying Dist., Tainan 73657 Taiwan.
| | - Chin-Ming Chen
- Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
8
|
Murray AJ, Montgomery HE. How wasting is saving: weight loss at altitude might result from an evolutionary adaptation. Bioessays 2014; 36:721-9. [PMID: 24917038 PMCID: PMC4143966 DOI: 10.1002/bies.201400042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At extreme altitude (>5,000 – 5,500 m), sustained hypoxia threatens human function and survival, and is associated with marked involuntary weight loss (cachexia). This seems to be a coordinated response: appetite and protein synthesis are suppressed, and muscle catabolism promoted. We hypothesise that, rather than simply being pathophysiological dysregulation, this cachexia is protective. Ketone bodies, synthesised during relative starvation, protect tissues such as the brain from reduced oxygen availability by mechanisms including the reduced generation of reactive oxygen species, improved mitochondrial efficiency and activation of the ATP-sensitive potassium (KATP) channel. Amino acids released from skeletal muscle also protect cells from hypoxia, and may interact synergistically with ketones to offer added protection. We thus propose that weight loss in hypoxia is an adaptive response: the amino acids and ketone bodies made available act not only as metabolic substrates, but as metabolic modulators, protecting cells from the hypoxic challenge.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Murphy CG, Stapelton R, Chen GC, Winter DC, Bouchier-Hayes DJ. Glutamine preconditioning protects against local and systemic injury induced by orthopaedic surgery. J Nutr Health Aging 2012; 16:365-9. [PMID: 22499460 DOI: 10.1007/s12603-011-0084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Long bone surgery represents a significant surgical insults, and may cause severe local and systemic sequalae following both planned and emergent surgery. Glutamine offers pharmacological modulation of injury through clinically acceptable preconditioning. This effect has not been previously demonstrated in an orthopaedic model. AIMS The aim of the study was to test the hypothesis that glutamine preconditioning protects against the local and systemic effects of long bone trauma in a rodent model. METHODS Thirty two adult male Sprague-Dawley rats were randomised into four groups: Control group which received trauma without preconditioning; Normal Saline preconditioning 1 hour before trauma; Glutamine preconditioning 1 hour before trauma; Glutamine preconditioning 24 hours prior to trauma. Trauma consisted of bilateral femoral fracture following intramedullary instrumentation. Blood samples were taken before the insult, and at an interval four hours following this. Bronchioalveolar lavage (BAL) was performed, with skeletal muscle and lung harvested for evaluation. RESULTS Glutamine pre-treated rats had lower Creatine Kinase levels, less creatinine elevation, and a significant reduction in neutrophil infiltration into BAL fluid. Glutamine pre-treated rats showed less muscle and lung oedema. This effect was more pronounced for the group which received glutamine 24 hours before trauma. CONCLUSION Preconditioning with a single bolus of intravenous glutamine prior to planned orthopaedic intervention affords loco-regional and distal organ protection. We believe these finding have significant implications for elective orthopaedic surgery where significant soft tissue and long bone manipulation is anticipated.
Collapse
Affiliation(s)
- C G Murphy
- RCSI Surgical Research Unit, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
10
|
Xue H, Sufit AJD, Wischmeyer PE. Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. JPEN J Parenter Enteral Nutr 2011; 35:188-97. [PMID: 21378248 DOI: 10.1177/0148607110381407] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pharmacologic doses of glutamine (GLN) can improve clinical outcome following acute illness and injury. Recent studies indicate enhanced heat shock protein (HSP) expression is a key mechanism underlying GLN's protection. However, such a link has not yet been tested in chronic inflammatory states, such as experimental inflammatory bowel disease (IBD). METHODS Experimental colitis was induced in Sprague-Dawley rats via oral 5% dextran sulfate sodium (DSS) for 7 days. GLN (0.75 g/kg/d) or sham was administered to rats by oral gavage during 7-day DSS treatment. In vitro inflammatory injury was studied using YAMC colonic epithelial cells treated with varying concentrations of GLN and cytokines (tumor necrosis factor-α/interferon-γ). RESULTS Pharmacologic dose, bolus GLN attenuated DSS-induced colitis in vivo with decreased area under curve for bleeding (8.06 ± 0.87 vs 10.38 ± 0.79, P < .05) and diarrhea (6.97 ± 0.46 vs 8.53 ± 0.39, P < .05). This was associated with enhanced HSP25 and HSP70 in colonic mucosa. In vitro, GLN enhanced cell survival and reduced proapoptotic caspase3 and poly(ADP-ribose) polymerase cleavage postcytokine injury. Cytokine-induced inducible nitric oxide synthase expression and nuclear translocation of nuclear factor-κB p65 subunit were markedly attenuated at GLN concentrations above 0.5 mmol/L. GLN increased cellular HSP25 and HSP70 in a dose-dependent manner. CONCLUSIONS These data demonstrate the therapeutic potential of GLN as a "pharmacologically acting nutrient" in the setting of experimental IBD. GLN sufficiency is crucial for the colonic epithelium to mount a cell-protective, antiapoptotic, and anti-inflammatory response against inflammatory injury. The enhanced HSP expression observed following GLN treatment may be responsible for this protective effect.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| | | | | |
Collapse
|
11
|
Saxena P, Newman MAJ, Shehatha JS, Redington AN, Konstantinov IE. Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 2009; 25:127-34. [PMID: 19549044 DOI: 10.1111/j.1540-8191.2009.00820.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remote ischemic conditioning is a novel concept of protection against ischemia-reperfusion injury. Brief controlled episodes of intermittent ischemia of the arm or leg may confer a powerful systemic protection against prolonged ischemia in a distant organ. This conditioning phenomenon is clinically applicable and can be performed before--preconditioning, during--perconditioning, or after--postconditioning prolonged distant organ ischemia. The remote ischemic conditioning may have an immense impact on clinical practice in the near future.
Collapse
Affiliation(s)
- Pankaj Saxena
- Department of Cardiothoracic Surgery, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
12
|
Chen G, Neilan TG, Chen H, Condron C, Kelly C, Hill ADK, Bouchier-Hayes DJ. Attenuation of lipopolysaccharide-mediated left ventricular dysfunction by glutamine preconditioning. J Surg Res 2009; 160:282-7. [PMID: 19628228 DOI: 10.1016/j.jss.2009.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 04/03/2009] [Accepted: 04/16/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Myocardial dysfunction is often seen during the inflammatory response to major surgery at 4 to 6h postoperatively. The aim of this study was to investigate the effect of glutamine pretreatment, as a means of preconditioning, on lipopolysaccharide-induced myocardial dysfunction. METHODS C57BL/6 mice were randomized into four groups: Control; lipopolysaccharide; glutamine plus lipopolysaccharide; and Quercetin, an inhibitor of heat shock protein synthesis plus glutamine and lipopolysaccharide. Left ventricular function was assessed at 6h following lipopolysaccharide (LPS) insult by invasive hemodynamics. Heat shock protein (HSP)72 in heart tissue was determined by Western immunoblot at 12h after glutamine administration. RESULTS Administration of lipopolysaccharide resulted in significant decrease in left ventricular end systolic pressure (LVESP) (69.1 +/- 2.52 mm Hg versus 106.3 +/- 3.36 mm Hg in controls), reduced dP/dtmax (4704.1 +/- 425.31 mm Hg/s versus 9389.8 +/- 999.4 mm Hg/s in controls), and the increase in left ventricular end diastolic pressure (LVEDP) (5.10 +/- 0.28 mm Hg versus 2.16 +/- 0.27 mm Hg in controls) (P < 0.05). Peritoneal injection of 25 g/kg of glutamine 12 h prior to lipopolysaccharide exposure induced HSP72 expression in heart tissues and attenuated lipopolysaccharide-induced left ventricular dysfunction: LVESP 85.94 +/- 3.8 mm Hg (P < 0.05), dP/dtmax 8331 +/- 425 mm Hg (P < 0.05), LVEDP 2.32 +/- 0.23 mm Hg (P < 0.01). Quercetin partially attenuated glutamine induced HSP72 expression and blocked the protective response of glutamine. CONCLUSION These data demonstrate that cardioprotection with glutamine is associated with induction of HSP72 and may be an approach to activating the preconditioning response in the heart in clinical practise.
Collapse
Affiliation(s)
- Gang Chen
- Department of Surgery, Royal College of Surgeons in Ireland, Education and Research CentreBeaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Host species-specific translocation of Escherichia coli. Eur J Clin Microbiol Infect Dis 2009; 28:1095-103. [PMID: 19437050 DOI: 10.1007/s10096-009-0754-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/01/2009] [Indexed: 01/24/2023]
Abstract
The purpose of this paper is to investigate the rate of translocation of Escherichia coli strains in different experimental/animal models. Four proficient translocating E. coli strains isolated from mesenteric lymph nodes (MLNs) and/or the blood of rats (strains KIC-1 and KIC-2), from a fatal case of pancreatitis (HMLN-1) and from pigs (PC-1 isolated in this study) were tested for their ability to translocate across two host species and the Caco-2 cell line as a model of the human gut epithelium. HMLN-1 was found in the MLNs of all 15 pigs tested. This strain, however, did not translocate in any rats and only colonised the caecum of four rats in small numbers. HMLN-1 and PC-1 were the dominant translocating strains in Caco-2 cells compared to KIC-1 and KIC-2, which were found to translocate at a lower rate in pigs and in Caco-2 cells. The rate of translocation of PC-1 in rats was also very low compared to KIC-1 and KIC-2. We suggest that, in studies aiming to investigate the mechanism of translocation of E. coli strains isolated from humans, rats may not be an appropriate animal model and that the Caco-2 cells or pigs are more suitable in vitro and in vivo models, respectively.
Collapse
|
14
|
Magill P, Murphy T, Bouchier-Hayes DJ, Mulhall KJ. Preconditioning and its clinical potential. Ir J Med Sci 2009; 178:129-34. [DOI: 10.1007/s11845-009-0319-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/03/2009] [Indexed: 01/24/2023]
|
15
|
Glutamine attenuates lipopolysaccharide-induced acute lung injury. Nutrition 2009; 25:692-8. [PMID: 19286350 DOI: 10.1016/j.nut.2008.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVES It has been reported that glutamine (GLN) can attenuate acute lung injury after sepsis. GLN is also thought to be a precursor of glutathione (GSH) synthesis. Using the GSH synthesis blocker, L-buthionine-(S,R)-sulfoximine (BSO), we investigated the role of GSH synthesis in the protective effect of GLN on acute lung injury. METHODS In this study, we used an acute lung injury model induced by intratracheal injection of lipopolysaccharide (1 mg mL(-1) kg(-1)). GLN (0.75 g/kg, intravenous) and BSO (2 mmol/kg, intraperitoneal) were administrated simultaneously. At 2 and 18 h after the injections, the rats were sacrificed by right ventricular puncture and bronchoalveolar lavage was done. The lower right lung was excised for histologic examination. Total protein concentration and total cell and neutrophil counts in the bronchoalveolar lavage fluid were determined. CD11b expression in the blood was determined by flow cytometry. We also analyzed myeloperoxidase activity, and GSH and interleukin-8 levels in lung tissues. RESULTS GLN supplementation reduced the total protein concentration and total cell and neutrophils counts in bronchoalveolar lavage fluid after lipopolysaccharide challenge. GLN enhanced GSH synthesis and attenuated interleukin-8 release and myeloperoxidase activity in lung tissues. GLN also decreased CD11b expression in blood neutrophils and prevented lung histologic changes. BSO abolished the effects of GLN and attenuated its protection on acute lung injury. CONCLUSION These results indicate that GLN could prevent neutrophil recruitment and infiltration, protect the alveolar barrier, and attenuate inflammatory injury during sepsis. This effect may be related to enhanced GSH synthesis.
Collapse
|
16
|
Decreasing the expression of LFA-1 and ICAM-1 as the major mechanism for the protective effect of glutamine on ischemia-reperfusion injury. Acta Orthop 2008; 79:308. [PMID: 18484261 DOI: 10.1080/17453670710015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Namazi H. Decreasing the expression of LFA-1 and ICAM-1 as the major mechanism for the protective effect of hyperbaric oxygen on ischemia-reperfusion injury. Microsurgery 2008; 28:300. [DOI: 10.1002/micr.20479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|