1
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Emerging Anti-Inflammatory COPD Treatments: Potential Cardiovascular Impacts. Int J Chron Obstruct Pulmon Dis 2024; 19:2481-2495. [PMID: 39606712 PMCID: PMC11600434 DOI: 10.2147/copd.s498255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition often complicated by cardiovascular disease (CVD) due to shared inflammatory pathways. This review explores the cardiovascular impacts of emerging anti-inflammatory therapies in COPD. Phosphodiesterase (PDE) inhibitors may offer anti-inflammatory effects with improved lung function but pose potential risks for arrhythmias when PDE3 is inhibited although PDE4 inhibitors reduce cardiovascular events by improving endothelial function and reducing thrombosis. Similarly, p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) inhibitors target COPD-related inflammation and may benefit COPD patients with CVD. p38 MAPK inhibitors reduce cardiac fibrosis, enhance contractility and lower the risk of arrhythmia. PI3K inhibitors target the PI3K/Akt pathway, which drives atherosclerosis and cardiac fibrosis, and thus potentially mitigate both plaque instability and fibrosis. Biologic therapies, including monoclonal antibodies that inhibit IL-5, IL-13/IL-4, thymic stromal lymphopoietin, IL-33, and IL-17A, show promise in reducing exacerbations but require close cardiovascular monitoring due to their immunomodulatory effects. Single-target inhibitors of neutrophil elastase or matrix metalloproteinases show limited efficacy in COPD but may aid cardiovascular patients by stabilizing atherosclerotic plaques through promoting vascular smooth muscle cell proliferation. However, their tendency to degrade the extracellular matrix and attract immune cells may heighten plaque rupture risk, contraindicating use in CVD. Alpha-1 antitrypsin replacement therapy holds promise, potentially reducing COPD exacerbations and providing cardiovascular protection, especially in myocardial injury. Understanding the influence of these innovative therapies on CVD is vital, making it imperative to examine these molecules in COPD patients with CVD at an early stage.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania ‘luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
2
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
3
|
Sciacca E, Muscato G, Spicuzza L, Fruciano M, Gili E, Sambataro G, Palmucci S, Vancheri C, Libra A. Pharmacological treatment in Idiopathic Pulmonary Fibrosis: current issues and future perspectives. Multidiscip Respir Med 2024; 19:982. [PMID: 38869027 PMCID: PMC11186439 DOI: 10.5826/mrm.2024.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a fibrotic interstitial lung disease characterized by uncertain etiology and poor prognosis. Over the years, the path to effective treatments has been marked by a series of advances and setbacks. The introduction of approved antifibrotic drugs, pirfenidone and nintedanib, marked a pivotal moment in the management of IPF. However, despite these advances, these drugs are not curative, although they can slow the natural progression of the disease. The history of drug therapy for IPF goes together with the increased understanding of the pathogenic mechanisms underlying the disease. Based on that, current research efforts continue to explore new therapies, possible personalized treatment strategies, drug combinations, and potential biomarkers for diagnosis and prognosis. In this review, we outline the route that led to the discover of the first effective therapies, ongoing clinical trials, and future directions in the search for more effective treatments.
Collapse
Affiliation(s)
- Enrico Sciacca
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology outpatient Clinic, Mascalucia (CT), Italy
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Division of Rheumatology, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University -Hospital Policlinico “G. Rodolico-San Marco”, Unità Operativa Semplice Dipartimentale di Imaging Polmonare e Tecniche Radiologiche Avanzate (UOSD IPTRA), Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| | - Alessandro Libra
- Department of Clinical and Experimental Medicine, “Regional Referral Center for Rare Lung Diseases”, University - Hospital Policlinico “G. Rodolico- San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Dollet R, Villada JD, Poisson T, Fasan R, Jubault P. Chemoenzymatic synthesis of optically active α-cyclopropyl-pyruvates and cyclobutenoates via enzyme-catalyzed carbene transfer with diazopyruvate. Org Chem Front 2024; 11:2008-2014. [PMID: 39007032 PMCID: PMC11241863 DOI: 10.1039/d3qo01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cyclopropanes are recurrent structural motifs in natural products and bioactive molecules. Recently, biocatalytic cyclopropanations have emerged as a powerful approach to access enantioenriched cyclopropanes, complementing chemocatalytic approaches developed over the last several decades. Here, we report the development of a first biocatalytic strategy for cyclopropanation using ethyl α-diazopyruvate as a novel enzyme-compatible carbene precursor. Using myoglobin variant Mb(H64V,V68G) as the biocatalyst, this method afforded the efficient synthesis of α-cyclopropylpyruvates in high diastereomeric ratios and enantiomeric excess (up to 99% ee). The ketoester moiety in the cyclopropane products can be used to synthesize diverse optically pure cyclopropane derivatives. Furthermore, the enzymatically obtained α-cyclopropylpyruvate products could be converted into enantiopure cyclobutenoates via a metal-free photochemical ring expansion without loss of optical activity.
Collapse
Affiliation(s)
- Raphaël Dollet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Thomas Poisson
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
5
|
Maher TM, Assassi S, Azuma A, Cottin V, Hoffmann-Vold AM, Kreuter M, Oldham JM, Richeldi L, Valenzuela C, Wijsenbeek MS, Coeck C, Schlecker C, Voss F, Wachtlin D, Martinez FJ. Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with progressive pulmonary fibrosis (FIBRONEER-ILD). BMJ Open Respir Res 2023; 10:e001580. [PMID: 37709661 PMCID: PMC10503394 DOI: 10.1136/bmjresp-2022-001580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Progressive pulmonary fibrosis (PPF) includes any diagnosis of progressive fibrotic interstitial lung disease (ILD) other than idiopathic pulmonary fibrosis (IPF). However, disease progression appears comparable between PPF and IPF, suggesting a similar underlying pathology relating to pulmonary fibrosis. Following positive results in a phase II study in IPF, this phase III study will investigate the efficacy and safety of BI 1015550 in patients with PPF (FIBRONEER-ILD). METHODS AND ANALYSIS In this phase III, double-blind, placebo-controlled trial, patients are being randomised 1:1:1 to receive BI 1015550 (9 mg or 18 mg) or placebo twice daily over at least 52 weeks, stratified by background nintedanib use. Patients must be diagnosed with pulmonary fibrosis other than IPF that is progressive, based on predefined criteria. Patients must have forced vital capacity (FVC) ≥45% predicted and haemoglobin-corrected diffusing capacity of the lung for carbon monoxide ≥25% predicted. Patients must be receiving nintedanib for at least 12 weeks, or not receiving nintedanib for at least 8 weeks, prior to screening. Patients on stable treatment with permitted immunosuppressives (eg, methotrexate, azathioprine) may continue their treatment throughout the trial. Patients with clinically significant airway obstruction or other pulmonary abnormalities, and those using immunosuppressives that may confound FVC results (cyclophosphamide, tocilizumab, mycophenolate, rituximab) or high-dose steroids will be excluded. The primary endpoint is absolute change from baseline in FVC (mL) at week 52. The key secondary endpoint is time to the first occurrence of any acute ILD exacerbation, hospitalisation for respiratory cause or death, over the duration of the trial. ETHICS AND DISSEMINATION The trial is being carried out in accordance with the ethical principles of the Declaration of Helsinki, the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The study results will be disseminated at scientific congresses and in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT05321082.
Collapse
Affiliation(s)
- Toby M Maher
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Section of Inflammation, Repair and Development, Imperial College London National Heart and Lung Institute, London, UK
| | - Shervin Assassi
- Division of Rheumatology, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Arata Azuma
- Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
- Respiratory Medicine and Clinical Research Centre, Meisei Hospital, Saitama, Japan
| | - Vincent Cottin
- Service de pneumologie, Hôpital Louis Pradel, Centre de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, iNRAE, member of ERN-LUNG, Lyon, France
| | | | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Justin M Oldham
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Valenzuela
- ILD Unit, Pulmonology Department, Hospital Universitario de la Princesa, University Autonomade Madrid, Madrid, Spain
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carl Coeck
- Boehringer Ingelheim SComm, Brussels, Belgium
| | | | - Florian Voss
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Daniel Wachtlin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | |
Collapse
|
6
|
Richeldi L, Azuma A, Cottin V, Kreuter M, Maher TM, Martinez FJ, Oldham JM, Valenzuela C, Gordat M, Liu Y, Stowasser S, Zoz DF, Wijsenbeek MS. Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with idiopathic pulmonary fibrosis (FIBRONEER-IPF). BMJ Open Respir Res 2023; 10:e001563. [PMID: 37597969 PMCID: PMC10441083 DOI: 10.1136/bmjresp-2022-001563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
IntroductionThere is an unmet need for new treatments for idiopathic pulmonary fibrosis (IPF). The oral preferential phosphodiesterase 4B inhibitor, BI 1015550, prevented a decline in forced vital capacity (FVC) in a phase II study in patients with IPF. This study design describes the subsequent pivotal phase III study of BI 1015550 in patients with IPF (FIBRONEER-IPF). METHODS AND ANALYSIS In this placebo-controlled, double-blind, phase III trial, patients are being randomised in a 1:1:1 ratio to receive 9 mg or 18 mg of BI 1015550 or placebo two times per day over at least 52 weeks, stratified by use of background antifibrotics (nintedanib/pirfenidone vs neither). The primary endpoint is the absolute change in FVC at week 52. The key secondary endpoint is a composite of time to first acute IPF exacerbation, hospitalisation due to respiratory cause or death over the duration of the trial. ETHICS AND DISSEMINATION The trial is being carried out in compliance with the ethical principles of the Declaration of Helsinki, in accordance with the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The results of the study will be disseminated at scientific congresses and in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT05321069.
Collapse
Affiliation(s)
- Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arata Azuma
- Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
- Respiratory Medicine and Clinical Research Centre, Meisei Hospital, Saitama, Japan
| | - Vincent Cottin
- Hôpital Louis Pradel, Centre Coordonnateur National de référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, UMR754, INRAE, Université Claude Bernard Lyon 1, Member of ERN-LUNG, Lyon, France
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik, University of Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Pneumology, RKH Clinic Ludwigsburg, Ludwigsburg, Germany
| | - Toby M Maher
- Department of Pulmonary, Critical Care and Sleep Medicine, USC Keck School of Medicine, Los Angeles, California, USA
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Justin M Oldham
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Valenzuela
- ILD Unit, Pulmonology Department, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maud Gordat
- Clinical Development & Operation Department, Boehringer Ingelheim, Reims, France
| | - Yi Liu
- Department of Biostatistics and Data Sciences, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Susanne Stowasser
- TA Inflammation Med, Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Donald F Zoz
- Global Clinical Development and Medical Affairs, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Marlies S Wijsenbeek
- Centre for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Calzetta L, Pistocchini E, Chetta A, Rogliani P, Cazzola M. Experimental drugs in clinical trials for COPD: Artificial Intelligence via Machine Learning approach to predict the successful advance from early-stage development to approval. Expert Opin Investig Drugs 2023. [PMID: 37364225 DOI: 10.1080/13543784.2023.2230138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Therapeutic advances in drug therapy of chronic obstructive pulmonary disease (COPD) really effective in suppressing the pathological processes underlying the disease deterioration are still needed. Artificial Intelligence (AI) via Machine Learning (ML) may represent an effective tool to predict clinical development of investigational agents. AREAL COVERED Experimental drugs in Phase I and II development for COPD from early 2014 to late 2022 were identified in the ClinicalTrials.gov database. Different ML models, trained from prior knowledge on clinical trial success, were used to predict the probability that experimental drugs will successfully advance toward approval in COPD, according to Bayesian inference as follows: ≤25% low probability, >25% and ≤ 50% moderate probability, >50% and ≤ 75% high probability, and > 75% very high probability. EXPERT OPINION The Artificial Neural Network and Random Forest ML models indicated that, among the current experimental drugs in clinical trials for COPD, only the bifunctional muscarinic antagonist - β2-adrenoceptor agonists (MABA) navafenterol and batefenterol, the inhaled corticosteroid (ICS)/MABA fluticasone furoate/batefenterol, and the bifunctional phosphodiesterase (PDE) 3/4 inhibitor ensifentrine resulted to have a moderate to very high probability of being approved in the next future, however not before 2025.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Pistocchini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
9
|
Wójcik-Pszczoła K, Pociecha K, Chłoń-Rzepa G, Zadrożna M, Nowak B, Plutecka H, Koczurkiewicz-Adamczyk P, Przejczowska-Pomierny K, Pękala E, Gosens R, Wyska E. Inhaled pan-phosphodiesterase inhibitors ameliorate ovalbumin-induced airway inflammation and remodeling in murine model of allergic asthma. Int Immunopharmacol 2023; 119:110264. [PMID: 37159965 DOI: 10.1016/j.intimp.2023.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-β/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Zadrożna
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Nowak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Hanna Plutecka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Przejczowska-Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Reinoud Gosens
- University of Groningen, Department of Molecular Pharmacology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
10
|
Li G, He D, Cai X, Guan W, Zhang Y, Wu JQ, Yao H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250:115195. [PMID: 36809706 DOI: 10.1016/j.ejmech.2023.115195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
11
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
12
|
Mao P, Huang C, Li Y, Zhao Y, Zhou S, Zhao Z, Mu Y, Wang L, Li F, Zhao AZ. Pharmacological targeting of type phosphodiesterase 4 inhibits the development of acute myeloid leukemia by impairing mitochondrial function through the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 157:114027. [PMID: 36436494 DOI: 10.1016/j.biopha.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is prone to drug-resistant relapse with a low 5-year survival rate. New therapeutic modalities are sorely needed to provide hope for AML relapse patients. Herein, we demonstrated a specific inhibitor of type 4 phosphodiesterase (PDE4), Zl-n-91, could significantly reduce the proliferation of AML cells, block DNA replication process, and increase AML cell death. Zl-n-91 also impeded the growth of subcutaneous xenograft and prolonged the survival of the MLL-AF9-driven AML model. Bioinformatic analysis revealed that elevated mitochondrial gene signatures inversely correlate with the survival of AML patients; and importantly, Zl-n-91 strongly suppressed the function of mitochondria. In addition, this PDE4 inhibitor induced alterations in multiple signaling pathways, including the reduction of β-catenin activity. Stimulation of the Wnt/β-catenin pathway could attenuate the inhibitory effect of Zl-n-91 on AML cell proliferation as well as mitochondrial function. Taken together, we revealed for the first time that targeting PDE4 activity could attenuate mitochondrial function through a Wnt/β-catenin pathway, which in turn would block the growth of AML cells. Specific PDE4 inhibitors can potentially serve as a new treatment modality for AML patients.
Collapse
Affiliation(s)
- Ping Mao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Changhao Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuyu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuanyi Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lina Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Richeldi L, Azuma A, Cottin V, Hesslinger C, Stowasser S, Valenzuela C, Wijsenbeek MS, Zoz DF, Voss F, Maher TM. Trial of a Preferential Phosphodiesterase 4B Inhibitor for Idiopathic Pulmonary Fibrosis. N Engl J Med 2022; 386:2178-2187. [PMID: 35569036 DOI: 10.1056/nejmoa2201737] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phosphodiesterase 4 (PDE4) inhibition is associated with antiinflammatory and antifibrotic effects that may be beneficial in patients with idiopathic pulmonary fibrosis. METHODS In this phase 2, double-blind, placebo-controlled trial, we investigated the efficacy and safety of BI 1015550, an oral preferential inhibitor of the PDE4B subtype, in patients with idiopathic pulmonary fibrosis. Patients were randomly assigned in a 2:1 ratio to receive BI 1015550 at a dose of 18 mg twice daily or placebo. The primary end point was the change from baseline in the forced vital capacity (FVC) at 12 weeks, which we analyzed with a Bayesian approach separately according to background nonuse or use of an antifibrotic agent. RESULTS A total of 147 patients were randomly assigned to receive BI 1015550 or placebo. Among patients without background antifibrotic use, the median change in the FVC was 5.7 ml (95% credible interval, -39.1 to 50.5) in the BI 1015550 group and -81.7 ml (95% credible interval, -133.5 to -44.8) in the placebo group (median difference, 88.4 ml; 95% credible interval, 29.5 to 154.2; probability that BI 1015550 was superior to placebo, 0.998). Among patients with background antifibrotic use, the median change in the FVC was 2.7 ml (95% credible interval, -32.8 to 38.2) in the BI 1015550 group and -59.2 ml (95% credible interval, -111.8 to -17.9) in the placebo group (median difference, 62.4 ml; 95% credible interval, 6.3 to 125.5; probability that BI 1015550 was superior to placebo, 0.986). A mixed model with repeated measures analysis provided results that were consistent with those of the Bayesian analysis. The most frequent adverse event was diarrhea. A total of 13 patients discontinued BI 1015550 treatment owing to adverse events. The percentages of patients with serious adverse events or severe adverse events were similar in the two trial groups. CONCLUSIONS In this placebo-controlled trial, treatment with BI 1015550, either alone or with background use of an antifibrotic agent, prevented a decrease in lung function in patients with idiopathic pulmonary fibrosis. (Funded by Boehringer Ingelheim; 1305-0013 ClinicalTrials.gov number, NCT04419506.).
Collapse
Affiliation(s)
- Luca Richeldi
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Arata Azuma
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Vincent Cottin
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Christian Hesslinger
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Susanne Stowasser
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Claudia Valenzuela
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Marlies S Wijsenbeek
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Donald F Zoz
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Florian Voss
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| | - Toby M Maher
- From Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome (L.R.); Nippon Medical School, Tokyo (A.A.); Hôpital Louis Pradel, Centre National de Référence des Maladies Pulmonaires Rares, Hospices Civils de Lyon, Unité Mixte de Recherche 754 Institut National de la Recherche Agronomique and Université Claude Bernard Lyon 1, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), RespiFil, OrphaLung, Lyon, France (V.C.); Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim International, Biberach (C.H.), and TA Inflammation Medicine (S.S.), Boehringer Ingelheim Pharma (F.V.), Ingelheim am Rhein - both in Germany; the Interstitial Lung Disease Unit, Department of Pulmonology, Hospital Universitario de la Princesa, University Autonoma de Madrid, Madrid (C.V.); the Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.S.W.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (D.F.Z.); Keck School of Medicine, University of Southern California, Los Angeles (T.M.M.); and the National Heart and Lung Institute, Imperial College London, London (T.M.M.)
| |
Collapse
|
14
|
Williams D. The Role of the Pharmacist in Optimizing Outcomes With Roflumilast, a PDE4 Inhibitor for the Treatment of COPD. J Pharm Pract 2022; 35:445-454. [PMID: 33267721 PMCID: PMC9161436 DOI: 10.1177/0897190020969286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The pharmacology of roflumilast, recent dosing revisions, and the integral roles of pharmacists in effective chronic obstructive pulmonary disease (COPD) management are reviewed here. SUMMARY COPD is characterized by progressive airflow limitation and intermittent acute exacerbations of symptoms, which contribute to disease progression, worsening of comorbidities, and reduced health-related quality of life. Patients with COPD may use a variety of pharmacotherapies (in combination with nonpharmacological modalities) to prevent exacerbations, reduce the impact of symptoms, and reduce or prevent COPD progression. Given the complex and multifaceted nature of disease management, pharmacists are uniquely positioned to collaborate with other clinicians to improve treatment adherence and efficacy via a number of diverse avenues in patients with COPD. Central to this endeavor is patient education and counseling regarding their treatment regimen. CONCLUSION Recent findings from a phase 3 clinical trial demonstrate improved tolerability and reduced treatment discontinuation resulting from the use of an uptitration regimen in patients with severe COPD who initiate therapy with roflumilast. Pharmacists have a central role in effective COPD management, especially with respect to patient education about treatments.
Collapse
Affiliation(s)
- Dennis Williams
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- UNC Medical Center, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Dudal S, Bissantz C, Caruso A, David-Pierson P, Driessen W, Koller E, Krippendorff BF, Lechmann M, Olivares-Morales A, Paehler A, Rynn C, Türck D, Van De Vyver A, Wang K, Winther L. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov Today 2022; 27:1604-1621. [PMID: 35304340 DOI: 10.1016/j.drudis.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing the disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy of a drug, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Here, we review selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods could help overcome these limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
16
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100092. [PMID: 35243334 PMCID: PMC8866667 DOI: 10.1016/j.crphar.2022.100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
The inhaled route is critical for the administration of drugs to treat patients suffering from COPD, but there is still an unmet need for new and innovative inhalers to address some limitations of existing products that do not make them suitable for many COPD patients. The treatment of COPD, currently limited to the use of bronchodilators, corticosteroids, and antibiotics, requires a significant expansion of the therapeutic armamentarium that is closely linked to the widening of knowledge on the pathogenesis and evolution of COPD. The great interest in the development of new drugs that may be able to interfere in the natural history of the disease is leading to the synthesis of numerous new molecules, of which however only a few have entered the stages of clinical development. On the other hand, further improvement of inhaled drug delivery could be an interesting possibility because it targets the organ of interest directly, requires significantly less drug to exert the pharmacological effect and, by lowering the amount of drug needed, reduces the cost of therapy. Unfortunately, however, the development of new inhaled drugs for use in COPD is currently too slow.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Pharmacology Unit, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
17
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Sposato B, Petrucci E, Serafini A, Lena F, Lacerenza LG, Montagnani A, Alessandri M, Cresti A, Scala R, Rogliani P, Ricci A, Perrella A, Scalese M. Which LABA/LAMA should be chosen in COPD patients in real life? Pulm Pharmacol Ther 2021; 71:102076. [PMID: 34530132 DOI: 10.1016/j.pupt.2021.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Given COPD heterogeneity, we do not know if some LABA/LAMAs are more suitable for some COPD phenotypes. This real-life database study aimed to evaluate retrospectively the 4 LABA/LAMA effectiveness and highlight possible specificities that could better guide us in choosing the right LABA/LAMA to be used. METHODS We searched for subjects (1,779) adherent to umeclidinium/vilanterol (UM/VI), indacaterol/glycopyrronium (IND/GLY), aclidinium/formoterol (ACLI/FOR) and tiotropium/olodaterol (TIO/OLO) treatments in our prescribing/dispensing database. Prescriptions for systemic corticosteroids (SC), antibiotics and salbutamol during one year of LABA/LAMA treatment were analyzed. RESULTS A better adherence was found in individuals taking IND/GLY (10.42 ± 1.86 packages/year) compared with UM/VI (10.09 ± 1.9; p = 0.008), ACLI/FOR (9.8 ± 1.8; p = 0.001) and TIO/OLO (10.1 ± 2.1; p = 0.047). The number of patients that were prescribed at least one package of SC/year and their package numbers/year were similar in males/females, across age groups and in "non-frequent exacerbators" with the 4 LABA/LAMAs. More SC were taken by frequent exacerbators, whereas fewer SC/antibiotic packages were prescribed to subjects aged >80 years with all treatments. In patients treated with ACLI/FOR or TIO/OLO, lower risks to having antibiotic prescriptions were observed when UM/VI (0.698[0.516-0.945] and 0.696[0.491-0.985; p = 0.020 and p = 0.041) and IND/GLY (0.597[0.445-0.802] and 0.595[0.423-0.836]; p = 0.001 and p = 0.003) were considered as landmarks. Lower risks for salbutamol prescriptions were detected with UM/VI (0.678[0.480-0.958]; p = 0.027) and TIO/OLO (0.585[0.365-0.937]; p = 0.026) when ACLI/FOR was used as a reference. CONCLUSION According to our retrospective database study, each LABA/LAMA could have a specific efficacy profile in COPD that might be considered for personalized therapy. However, head-to-head targeted trials aimed to assess the impact of different LABA/LAMAs on COPD are needed to confirm/disprove such results.
Collapse
Affiliation(s)
- Bruno Sposato
- Pneumology Department, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy; Experimental Medicine and Systems, "PhD Program" Department of Systems Medicine University of Rome "Tor Vergata", Italy.
| | - Elisa Petrucci
- Department of Pharmaceutical Medicine, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy
| | - Andrea Serafini
- Medical Management Department, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy
| | - Fabio Lena
- Department of Pharmaceutical Medicine, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy
| | - Leonardo Gianluca Lacerenza
- Department of Pharmaceutical Medicine, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy
| | - Andrea Montagnani
- Department of Internal Medicine and Specialties, USL Tuscany South-East, Italy
| | - Massimo Alessandri
- Department of Internal Medicine and Specialties, USL Tuscany South-East, Italy
| | - Alberto Cresti
- Cardiology Department, "Misericordia" Hospital, Grosseto, USL Tuscany South-East, Italy
| | - Raffaele Scala
- Pulmonology and Respiratory Intensive Care Unit, S Donato Hospital, Arezzo, Italy
| | - Paola Rogliani
- Experimental Medicine and Systems, "PhD Program" Department of Systems Medicine University of Rome "Tor Vergata", Italy; Respiratory Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Ricci
- Division of Pneumology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, Rome, Italy
| | - Antonio Perrella
- Pneumology Department, Azienda USL Toscana Sud-Est, "Misericordia" Hospital, Grosseto, Italy
| | - Marco Scalese
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
19
|
Wegesser T, Coppi A, Harper T, Paris M, Minocherhomji S. Nonclinical genotoxicity and carcinogenicity profile of apremilast, an oral selective inhibitor of PDE4. Regul Toxicol Pharmacol 2021; 125:104985. [PMID: 34237378 DOI: 10.1016/j.yrtph.2021.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Apremilast is an oral, selective small molecule inhibitor of phosphodiesterase-4 (PDE4) that has been approved for the treatment of active psoriatic arthritis, moderate to severe plaque psoriasis, and for patients with oral ulcers associated with Behçet's disease. Apremilast modulates the inflammatory cascade in cells by inhibiting PDE4, thus preventing the degradation of cyclic adenosine monophosphate, resulting in the upregulation of interleukin (IL)-10 and the downregulation of proinflammatory cytokines, including IL-23, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα). Here, we evaluated the genotoxic and carcinogenic potential of apremilast using Good Laboratory Practice (GLP)-compliant in vitro and in vivo studies. Apremilast was not genotoxic in the genetic toxicology battery, as evaluated for mutagenicity in the Ames test up to concentrations of 5000 μg/plate, clastogenicity in cultured human peripheral blood lymphocytes up to concentrations of 700 ug/mL was in excess of the solubility limit in culture medium and not able to assess; and negative for the induction of micronuclei in the bone marrow micronucleus test in mice up to doses of 2000 mg/kg/day. Furthermore, apremilast did not increase the incidence of tumors in lifetime rat or mouse carcinogenicity studies up to the maximum tolerated dose. In summary, in non-clinical studies, apremilast is not genotoxic and is not carcinogenic.
Collapse
Affiliation(s)
| | - Aldo Coppi
- Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Tod Harper
- Amgen Inc., Thousand Oaks, CA, 91320, USA
| | | | | |
Collapse
|
20
|
Allart-Simon I, Moniot A, Bisi N, Ponce-Vargas M, Audonnet S, Laronze-Cochard M, Sapi J, Hénon E, Velard F, Gérard S. Pyridazinone derivatives as potential anti-inflammatory agents: synthesis and biological evaluation as PDE4 inhibitors. RSC Med Chem 2021; 12:584-592. [PMID: 34046629 PMCID: PMC8127987 DOI: 10.1039/d0md00423e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), which controls the intracellular level of cyclic adenosine monophosphate (cAMP), has aroused scientific attention as a suitable target for anti-inflammatory therapy of respiratory diseases. This work describes the development and characterization of pyridazinone derivatives bearing an indole moiety as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4-(5-methoxy-1H-indol-3-yl)-6-methylpyridazin-3(2H)-one possesses promising activity, and selectivity towards PDE4B isoenzymes and is able to regulate potent pro-inflammatory cytokine and chemokine production by human primary macrophages.
Collapse
Affiliation(s)
- Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Nicolo Bisi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Miguel Ponce-Vargas
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Sandra Audonnet
- Université de Reims-Champagne-Ardenne, URCACyt, UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| |
Collapse
|
21
|
Matera MG, Ora J, Cavalli F, Rogliani P, Cazzola M. New Avenues for Phosphodiesterase Inhibitors in Asthma. J Exp Pharmacol 2021; 13:291-302. [PMID: 33758554 PMCID: PMC7979323 DOI: 10.2147/jep.s242961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Phosphodiesterases (PDEs) are isoenzymes ubiquitously expressed in the lungs where they catalyse cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (GMP), which are fundamental second messengers in asthma, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signaling pathways and, consequently, myriad biological responses. The superfamily of PDEs is composed of 11 families with a distinct substrate specificity, molecular structure and subcellular localization. Experimental studies indicate a possible role in asthma mainly for PDE3, PDE4, PDE5 and PDE7. Consequently, drugs that inhibit PDEs may offer novel therapeutic options for the treatment of this disease. Areas Covered In this article, we describe the progress made in recent years regarding the possibility of using PDE inhibitors in the treatment of asthma. Expert Opinion Many data indicate the potential benefits of PDE inhibitors as an add-on treatment especially in severe asthma due to their bronchodilator and/or anti-inflammatory activity, but no compound has yet reached the market as asthma treatment mainly because of their limited tolerability. Therefore, there is a growing interest in developing new PDE inhibitors with an improved safety profile. In particular, the research is focused on the development of drugs capable of interacting simultaneously with different PDEs, or to be administered by inhalation. CHF 6001 and RPL554 are the only molecules that currently are under clinical development but there are several new agents with interesting pharmacological profiles. It will be stimulating to assess the impact of such agents on individual treatable traits in specially designed studies.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Francesco Cavalli
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Paola Rogliani
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
22
|
Bodkhe S, Nikam M, Sherje AP, Khan T, Suvarna V, Patel K. Current insights on clinical efficacy of roflumilast for treatment of COPD, asthma and ACOS. Int Immunopharmacol 2020; 88:106906. [PMID: 33182057 DOI: 10.1016/j.intimp.2020.106906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase-4 inhibitors (PDE4) are of great interest for the treatment of airway inflammatory diseases due to its broad anti-inflammatory effects. Roflumilast is a selective PDE4 inhibitor that inhibits pulmonary and systemic inflammation and rallies symptoms in airway diseases. Asthma and COPD are common chronic airway inflammatory diseases having incompletely illustrious pathophysiology and clinical manifestations. Recently, the condition called Asthma- COPD Overlap (ACO) has been evolved having the overlapping symptoms of both diseases. The newly discovered PDE4 inhibitor, roflumilast has exposed its potential in the treatment of Asthma, COPD and ACOS. Its mechanism of action in airway inflammatory diseases are said to be exerts by elevating intracellular cAMP and shows its anti-inflammatory action. Roflumilast, a promising therapeutic approach in inflammatory airway diseases, has many significant outcomes. In this review, we have provided various promising clinical evidences of roflumilast in COPD and asthma. However, there is no published clinical evidence to date for the role of roflumilast in ACOS. Nevertheless, there are therapeutic mechanisms that provide a reference for clinical application for ACOS.
Collapse
Affiliation(s)
- Shradha Bodkhe
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Mayuri Nikam
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Atul P Sherje
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Tabassum Khan
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Vasanti Suvarna
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Kavit Patel
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
23
|
Phillips JE. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front Pharmacol 2020; 11:259. [PMID: 32226383 PMCID: PMC7080983 DOI: 10.3389/fphar.2020.00259] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
PDE4 inhibitors can suppress a variety of inflammatory cell functions that contribute to their anti-inflammatory actions in respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. The systemically delivered PDE4 inhibitor roflumilast has been approved for use in a subset of patients with severe COPD with chronic bronchitis and a history of exacerbations. Use of systemically delivered PDE4 inhibitors has been limited by systemic side effects. Inhaled PDE4 inhibitors have been considered as a viable alternative to increase tolerability and determine the maximum therapeutic potential of PDE4 inhibition in respiratory diseases.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Inflammation Research, Amgen Research, Thousand Oaks, CA, United States
| |
Collapse
|
24
|
Albertson TE, Chenoweth JA, Pearson SJ, Murin S. The pharmacological management of asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS). Expert Opin Pharmacother 2020; 21:213-231. [PMID: 31955671 DOI: 10.1080/14656566.2019.1701656] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS) is a disease phenotype that shares T helper lymphocyte cell Th1/neutrophilic/non-Type-2 Inflammation pathways thought to be key in COPD and Th2/eosinophilic/Type-2 inflammatory pathways of asthma. The pharmacology of treating ACOS is challenging in severe circumstances.Areas covered: This review evaluates the stepwise treatment of ACOS using pharmacological treatments used in both COPD and asthma. The most common medications involve the same inhalers used to treat COPD and asthma patients. Advanced stepwise therapies for ACOS patients are based on patient characteristics and biomarkers. Very few clinical trials exist that focus specifically on ACOS patients.Expert opinion: After inhalers, advanced therapies including phosphodiesterase inhibitors, macrolides, N-acetylcysteine and statin therapy for those ACOS patients with a COPD appearance and exacerbations are available. In atopic ACOS patients with exacerbations, advanced asthma therapies (leukotriene receptor antagonists and synthesis blocking agents.) are used. ACOS patients with elevated blood eosinophil/IgE levels are considered for immunotherapy or therapeutic monoclonal antibodies blocking specific Th2/Type-2 interleukins or IgE. Symptom control, stabilization/improvement in pulmonary function and reduced exacerbations are the metrics of success. More pharmacological trials of ACOS patients are needed to better understand which patients benefit from specific treatments.Abbreviations: 5-LOi: 5-lipoxygenase inhibitor; ACOS: asthma - COPD overlap syndrome; B2AR: Beta2 adrenergic receptors; cAMP: cyclic adenosine monophosphate; cGMP: cyclic guanosine monophosphate; CI: confidence interval; COPD: chronic obstructive pulmonary disease; CRS : chronic rhinosinusitis; cys-LT: cysteinyl leukotrienes; DPI: dry powder inhaler; EMA: European Medicines Agency; FDA: US Food and Drug Administration; FDC: fixed-dose combination; FeNO: exhaled nitric oxide; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; GM-CSF: granulocyte-macrophage colony-stimulating factor; ICS : inhaled corticosteroids; IL: interleukin; ILC2: Type 2 innate lymphoid cells; IP3: Inositol triphosphate; IRR: incidence rate ratio; KOLD: Korean Obstructive Lung Disease; LABA: long-acting B2 adrenergic receptor agonist; LAMA: long-acting muscarinic receptor antagonist; LRA: leukotriene receptor antagonist; LT: leukotrienes; MDI: metered-dose inhalers; MN: M-subtype muscarinic receptors; MRA: muscarinic receptor antagonist; NAC: N-acetylcysteine; NEB: nebulization; OR: odds ratio; PDE: phosphodiesterase; PEFR: peak expiratory flow rate; PGD2: prostaglandin D2; PRN: as needed; RR: risk ratio; SABA: short-acting B2 adrenergic receptor agonist; SAMA: short-acting muscarinic receptor antagonist; SDMI: spring-driven mist inhaler; Th1: T helper cell 1 lymphocyte; Th2: T helper cell 2 lymphocytes; TNF-α: tumor necrosis factor alpha; US : United States.
Collapse
Affiliation(s)
- Timothy E Albertson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.,Department of Emergency Medicine, University of California, Davis, Sacramento, CA, USA.,Veterans Administration Northern California Health Care System, Department of Medicine, Mather, CA, USA
| | - James A Chenoweth
- Department of Emergency Medicine, University of California, Davis, Sacramento, CA, USA.,Veterans Administration Northern California Health Care System, Department of Medicine, Mather, CA, USA
| | - Skyler J Pearson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.,Veterans Administration Northern California Health Care System, Department of Medicine, Mather, CA, USA
| | - Susan Murin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.,Veterans Administration Northern California Health Care System, Department of Medicine, Mather, CA, USA
| |
Collapse
|
25
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Ensifentrine (RPL554): an investigational PDE3/4 inhibitor for the treatment of COPD. Expert Opin Investig Drugs 2019; 28:827-833. [PMID: 31474120 DOI: 10.1080/13543784.2019.1661990] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A compound that simultaneously inhibits PDE3 and PDE4 should increase airway caliber by relaxing the smooth muscle and, simultaneously, suppress airway inflammatory responses. Ensifentrine (RPL554) is considered a PDE3/4 inhibitor, although its affinity for PDE3 is 3,440 times higher than that for PDE4, that is under clinical development for the treatment of asthma and COPD and, potentially, cystic fibrosis. Areas covered: We analyze the development of this molecule from its basic pharmacology to the present clinical Phase II studies. Expert opinion: Ensifentrine is an interesting drug but there is a lack of solid studies that still does not allow us to correctly allocate this molecule in the current COPD and even asthma therapeutic armamentarium. Furthermore, apparently ensifentrine has not yet entered Phase III clinical development and, in any case, there is no reliable evidence of its ability to elicit an anti-inflammatory activity in patients with COPD or asthma. Therefore, the real anti-inflammatory profile of ensifentrine must be clarified with new studies of basic pharmacology and adequate clinical studies specifically designed. However, at present the most intriguing perspective is linked to its possible use in the treatment of cystic fibrosis, also considering the lack of valid therapeutic options for this disease.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Luigino Calzetta
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
26
|
Cazzola M, Rogliani P, Stolz D, Matera MG. Pharmacological treatment and current controversies in COPD. F1000Res 2019; 8:F1000 Faculty Rev-1533. [PMID: 31508197 PMCID: PMC6719668 DOI: 10.12688/f1000research.19811.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Bronchodilators, corticosteroids, and antibiotics are still key elements for treating chronic obstructive pulmonary disease in the 2019 Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations and this is due in part to our current inability to discover new drugs capable of decisively influencing the course of the disease. However, in recent years, information has been produced that, if used correctly, can allow us to improve the use of the available therapies.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
27
|
Li H, Zuo J, Tang W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front Pharmacol 2018; 9:1048. [PMID: 30386231 PMCID: PMC6199465 DOI: 10.3389/fphar.2018.01048] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
Phosphodiesterase-4 (PDE4), mainly present in immune cells, epithelial cells, and brain cells, manifests as an intracellular non-receptor enzyme that modulates inflammation and epithelial integrity. Inhibition of PDE4 is predicted to have diverse effects via the elevation of the level of cyclic adenosine monophosphate (cAMP) and the subsequent regulation of a wide array of genes and proteins. It has been identified that PDE4 is a promising therapeutic target for the treatment of diverse pulmonary, dermatological, and severe neurological diseases. Over the past decades, numerous PDE4 inhibitors have been designed and synthesized, among which roflumilast, apremilast, and crisaborole were approved for the treatment of inflammatory airway diseases, psoriatic arthritis, and atopic dermatitis, respectively. It is regrettable that the dramatic efficacies of a drug are often accompanied by adverse effects, such as nausea, emesis, and gastrointestinal reactions. However, substantial advances have been made to mitigate the adverse effects and obtain better benefit-to-risk ratio. This review highlights the dialectical role of PDE4 in drug discovery and the disquisitive details of certain PDE4 inhibitors to provide an overview of the topics that still need to be addressed in the future.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Zuo
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Seibel J, Kryshen K, Pongrácz JE, Lehner MD. In vivo and in vitro investigation of anti-inflammatory and mucus-regulatory activities of a fixed combination of thyme and primula extracts. Pulm Pharmacol Ther 2018; 51:10-17. [DOI: 10.1016/j.pupt.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
|
29
|
Rogliani P, Ora J, Puxeddu E, Calzetta L, Cavalli F, Matera MG, Cazzola M. Effect of adding roflumilast or ciclesonide to glycopyrronium on lung volumes and exercise tolerance in patients with severe COPD: A pilot study. Pulm Pharmacol Ther 2018; 49:20-26. [DOI: 10.1016/j.pupt.2017.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
30
|
Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways. Int J Mol Sci 2018; 19:ijms19020513. [PMID: 29419799 PMCID: PMC5855735 DOI: 10.3390/ijms19020513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/06/2023] Open
Abstract
Inflammatory responses induced by peripheral administration of lipopolysaccharide (LPS) triggers depressive-like behavioral syndrome in rodents. Inhibition of phosphodiesterase 4 (PDE4) produces a robust anti-inflammatory effect in inflammatory cells. Unfortunately, archetypal PDE4 inhibitors cause intolerable gastrointestinal side-effects, such as vomiting and nausea. N-isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel, selective PDE4 inhibitor with little, or no, emetic potency. Our previous studies show that FCPR03 is effective in attenuating neuroinflammation in mice treated with LPS. However, whether FCPR03 could exert antidepressant-like effect induced by LPS is largely unknown. In the present study, mice injected intraperitoneally (i.p.) with LPS was established as an in vivo animal model of depression. The antidepressant-like activities of FCPR03 were evaluated using a tail suspension test, forced swimming test, and sucrose preference test. We demonstrated that administration of FCPR03 (1 mg/kg) produced antidepressant-like effects in mice challenged by LPS, as evidenced by decreases in the duration of immobility in the forced swim and tail suspension tests, while no significant changes in locomotor activity were observed. FCPR03 also increased sucrose preference in mice treated with LPS. In addition, treatment with FCPR03 abolished the downregulation of brain-derived neurotrophic factor induced by LPS and decreased the level of corticosterone in plasma. Meanwhile, periphery immune challenge by LPS induced enhanced phosphorylation of p38-mitogen activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) in both the cerebral cortex and hippocampus in mice. Interestingly, treatment with FCPR03 significantly blocked the role of LPS and reduced the levels of phosphorylated p38 and JNK. Collectively, these results indicate that FCPR03 shows antidepressant-like effects in mice challenged by LPS, and the p38/JNK signaling pathway is possibly involved in this process. Our findings suggest that FCPR03 is a potential compound for the prevention or treatment of depression.
Collapse
|
31
|
Barberot C, Moniot A, Allart-Simon I, Malleret L, Yegorova T, Laronze-Cochard M, Bentaher A, Médebielle M, Bouillon JP, Hénon E, Sapi J, Velard F, Gérard S. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem 2018; 146:139-146. [PMID: 29407945 DOI: 10.1016/j.ejmech.2018.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), that controls intracellular level of cyclic nucleotide cAMP, has aroused scientific attention as a suitable target for anti-inflammatory therapy in respiratory diseases. Here we describe the development of two families of pyridazinone derivatives as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4,5-dihydropyridazinone representatives possess promising activity, selectivity towards PDE4 isoenzymes and are able to reduce IL-8 production by human primary polymorphonuclear cells.
Collapse
Affiliation(s)
- Chantal Barberot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Laurette Malleret
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Tatiana Yegorova
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Abderrazzaq Bentaher
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43 Bd Du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France.
| |
Collapse
|
32
|
Rogliani P, Brusasco V, Fabbri L, Ungar A, Muscianisi E, Barisone I, Corsini A, De Angelis G. Multidimensional approach for the proper management of a complex chronic patient with chronic obstructive pulmonary disease. Expert Rev Respir Med 2017; 12:103-112. [PMID: 29241393 DOI: 10.1080/17476348.2018.1417041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is frequently associated with comorbidities occurring either independently or as consequences of COPD. Areas covered: This review examines the interactions between the pathophysiology of COPD and the most frequent comorbidities, and highlights the need for multidimensional clinical strategies to manage COPD patients with comorbidities. Expert commentary: Most COPD patients need to be approached in a complex and multifactorial scenario. The diagnosis of COPD is necessarily based on the presence of chronic respiratory symptoms and poorly reversible airflow obstruction, but exacerbations and comorbidities need to be considered in the evaluation of disease severity and prognosis in individual patients. More importantly, defining the precise relationship between COPD and comorbidities for each patient is the basis for a correct therapeutic approach.
Collapse
Affiliation(s)
- Paola Rogliani
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Vito Brusasco
- b Department of Internal Medicine , University of Genoa , Genova , Italy
| | - Leonardo Fabbri
- c Department of Endocrinology, Metabolism and Geriatric , Sant'Agostino Hospital , Modena , Italy
| | - Andrea Ungar
- d Geriatric and Intensive Care Medicine , AO Careggi and University of Florence , Florence , Italy
| | - Elisa Muscianisi
- e Novartis Farma Spa, Respiratory Franchise , Origgio , VA , Italy
| | - Ilaria Barisone
- e Novartis Farma Spa, Respiratory Franchise , Origgio , VA , Italy
| | - Alberto Corsini
- f Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy.,g Multimedica IRCCS , Milan Italy
| | - Giuseppe De Angelis
- h Department of Cardiovascular Medicine , University of Milan , Milan , Italy
| |
Collapse
|
33
|
Patel BS, Rahman MM, Baehring G, Xenaki D, Tang FSM, Oliver BG, Ammit AJ. Roflumilast N-Oxide in Combination with Formoterol Enhances the Antiinflammatory Effect of Dexamethasone in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2017; 56:532-538. [PMID: 27997807 DOI: 10.1165/rcmb.2016-0191oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Roflumilast is an orally active phosphodiesterase 4 inhibitor approved for use in chronic obstructive pulmonary disease. Roflumilast N-oxide (RNO) is the active metabolite of roflumilast and has a demonstrated antiinflammatory impact in vivo and in vitro. To date, the effect of RNO on the synthetic function of airway smooth muscle (ASM) cells is unknown. We address this herein and investigate the effect of RNO on β2-adrenoceptor-mediated, cAMP-dependent responses in ASM cells in vitro, and whether RNO enhances steroid-induced repression of inflammation. RNO (0.001-1,000 nM) alone had no effect on AMP production from ASM cells, and significant potentiation of the long-acting β2-agonist formoterol-induced cAMP could only be achieved at the highest concentration of RNO tested (1,000 nM). At this concentration, RNO exerted a small, but not significantly different, potentiation of formoterol-induced expression of antiinflammatory mitogen-activated protein kinase phosphatase 1. Consequently, tumor necrosis factor-induced IL-8 secretion was unaffected by RNO in combination with formoterol. However, because there was the potential for phosphodiesterase 4 inhibitors and long-acting β2-agonists to interact with corticosteroids to achieve superior antiinflammatory efficacy, we examined whether RNO, alone or in combination with formoterol, enhanced the antiinflammatory effect of dexamethasone by measuring the impact on IL-8 secretion. Although RNO alone did not significantly enhance the cytokine repression achieved with steroids, RNO in combination with formoterol significantly enhanced the antiinflammatory effect of dexamethasone in ASM cells. This was linked to increased mitogen-activated protein kinase phosphatase 1 expression in ASM cells, suggesting that a molecular mechanism is responsible for augmented antiinflammatory actions of combination therapeutic approaches that include RNO.
Collapse
Affiliation(s)
| | | | | | - Dikaia Xenaki
- 3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and
| | | | - Brian G Oliver
- 2 Woolcock Emphysema Centre and.,3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- 2 Woolcock Emphysema Centre and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Calzetta L, Roncada P, di Cave D, Bonizzi L, Urbani A, Pistocchini E, Rogliani P, Matera MG. Pharmacological treatments in asthma-affected horses: A pair-wise and network meta-analysis. Equine Vet J 2017; 49:710-717. [PMID: 28295526 DOI: 10.1111/evj.12680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Equine asthma is a disease characterised by reversible airflow obstruction, bronchial hyper-responsiveness and airway inflammation following exposure of susceptible horses to specific airborne agents. Although clinical remission can be achieved in a low-airborne dust environment, repeated exacerbations may lead to irreversible airway remodelling. The available data on the pharmacotherapy of equine asthma result from several small studies, and no head-to-head clinical trials have been conducted among the available medications. OBJECTIVES To assess the impact of the pharmacological interventions in equine asthma and compare the effect of different classes of drugs on lung function. STUDY DESIGN Pair-wise and network meta-analysis. METHODS Literature searches for clinical trials on the pharmacotherapy of equine asthma were performed. The risk of publication bias was assessed by funnel plots and Egger's test. Changes in maximum transpulmonary or pleural pressure, pulmonary resistance and dynamic lung compliance vs. control were analysed via random-effects models and Bayesian networks. RESULTS The results obtained from 319 equine asthma-affected horses were extracted from 32 studies. Bronchodilators, corticosteroids and chromones improved maximum transpulmonary or pleural pressure (range: -8.0 to -21.4 cmH2 O; P<0.001). Bronchodilators, corticosteroids and furosemide reduced pulmonary resistance (range: -1.2 to -1.9 cmH2 O/L/s; P<0.001), and weakly increased dynamic lung compliance. Inhaled β2 -adrenoreceptor (β2 -AR) agonists and inhaled corticosteroids had the highest probability of being the best therapies. Long-term treatments were more effective than short-term treatments. MAIN LIMITATIONS Weak publication bias was detected. CONCLUSIONS This study demonstrates that long-term treatments with inhaled corticosteroids and long-acting β2 -AR agonists may represent the first choice for treating equine asthma. Further high quality clinical trials are needed to clarify whether inhaled bronchodilators should be preferred to inhaled corticosteroids or vice versa, and to investigate the potential superiority of combination therapy in equine asthma.
Collapse
Affiliation(s)
- L Calzetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - P Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Milan, Italy
| | - D di Cave
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, University of Rome Tor Vergata, Rome, Italy
| | - L Bonizzi
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - A Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Milan, Italy
| | | | - P Rogliani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - M G Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
35
|
Calzetta L, Rogliani P, Ora J, Puxeddu E, Cazzola M, Matera MG. LABA/LAMA combination in COPD: a meta-analysis on the duration of treatment. Eur Respir Rev 2017; 26:26/143/160043. [DOI: 10.1183/16000617.0043-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
When there are no randomised clinical trials directly comparing all relevant treatment options, an indirect treatment comparison via meta-analysis of the available clinical evidence is an acceptable alternative. However, meta-analyses may be very misleading if not adequately performed. Here, we propose and validate a simple and effective approach to meta-analysis for exploring the effectiveness of long-acting β2-agonist (LABA)/long-acting muscarinic antagonist (LAMA) fixed-dose combinations in chronic obstructive pulmonary disease.14 articles with 20 329 patients (combinations n=9292; monocomponents n=11 037) were included in this study. LABA/LAMA combinations were always more effective than the monocomponents in terms of the improvement in trough forced expiratory volume in 1 s, transition dyspnoea index and St George's Respiratory Questionnaire scores after 3, 6 and 12 months of treatment. No significant publication bias was identified. Significant discrepancies with previous network meta-analyses have been found, with overall differences ranging from 26.7% to 43.3%.Results from previous network meta-analyses were misleading because no adequate attention was given to formulating the review question, specifying eligibility criteria, correctly identifying studies, collecting appropriate information and deciding what it would be pharmacologically relevant to analyse. The real gradient of effectiveness of LABA/LAMA fixed-dose combinations remains an unmet medical need; however, it can be investigated indirectly using a high-quality meta-analytic approach.
Collapse
|
36
|
Abstract
Theophylline is an orally acting xanthine that has been used since 1937 for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, in most treatment guidelines, xanthines have now been consigned to third-line therapy because of their narrow therapeutic window and propensity for drug-drug interactions. However, lower than conventional doses of theophylline considered to be bronchodilator are now known to have anti-inflammatory actions of relevance to the treatment of respiratory disease. The molecular mechanism(s) of action of theophylline are not well understood, but several potential targets have been suggested including non-selective inhibition of phosphodiesterases (PDE), inhibition of phosphoinositide 3-kinase, adenosine receptor antagonism and increased activity of certain histone deacetylases. Although theophylline has a narrow therapeutic window, other xanthines are in clinical use that are claimed to have a better tolerability such as doxofylline and bamifylline. Nonetheless, xanthines still play an important role in the treatment of asthma and COPD as they can show clinical benefit in patients who are refractory to glucocorticosteroid therapy, and withdrawal of xanthines from patients causes worsening of disease, even in patients taking concomitant glucocorticosteroids.More recently the orally active selective PDE4 inhibitor, roflumilast, has been introduced into clinical practice for the treatment of severe COPD on top of gold standard treatment. This drug has been shown to improve lung function in patients with severe COPD and to reduce exacerbations, but is dose limited by a range side effect, particularly gastrointestinal side effects.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - C P Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|
37
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Tiotropium formulations and safety: a network meta-analysis. Ther Adv Drug Saf 2017; 8:17-30. [PMID: 28203364 PMCID: PMC5298465 DOI: 10.1177/2042098616667304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tiotropium is now delivered via two different inhaler devices: the original Handihaler 18 μg once daily, which uses a powder formulation; and the newer Respimat Soft Mist Inhaler (SMI) 5 μg once daily. It has been questioned whether the two devices can be assumed to have the same safety profile, although the TIOSPIR trial showed that tiotropium when administered via Respimat SMI 5 μg is not less safe than Handihaler 18 μg. Therefore, we have carried out a safety evaluation of tiotropium Handihaler 18 µg versus tiotropium Respimat SMI 5 µg and 2.5 µg, via systematic review and network meta-analysis of the currently available clinical evidence. The results of our meta-analysis with an extremely large number of patients analysed demonstrate that the safety profile of tiotropium HandiHaler is generally superior to that of tiotropium Respimat SMI, although no statistical difference was detected between these two devices. However, the SUCRA analysis favoured tiotropium Respimat SMI with regards to serious adverse events (AEs). We do not believe that using Respimat SMI rather that HandiHaler exposes patients to higher risks of real AEs. Rather, we believe that there may be a different cardiovascular (CV) response to muscarinic receptors blockage in individual patients. Therefore, it will be essential to make all possible efforts to proactively identify patients at increased risk of CV AEs when treated with tiotropium or another antimuscarinic drug.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Luigino Calzetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|