1
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
2
|
Hu YX, Liu Z, Zhang Z, Deng Z, Huang Z, Feng T, Zhou QH, Mei S, Yi C, Zhou Q, Zeng PH, Pei G, Tian S, Tian XF. Antihepatoma peptide, scolopentide, derived from the centipede scolopendra subspinipes mutilans. World J Gastroenterol 2023; 29:1875-1898. [PMID: 37032730 PMCID: PMC10080696 DOI: 10.3748/wjg.v29.i12.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China. However, current studies focus on antimicrobial and anticoagulation agents rather than tumors. The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated. It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines.
AIM To purify, characterize, and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism.
METHODS An antihepatoma peptide (scolopentide) was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis, a Sephadex G-25 column, and two steps of high-performance liquid chromatography (HPLC). Additionally, the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity. The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry (QTOF MS), and the sequence was matched by using the Mascot search engine. Based on the sequence and molecular weight, scolopentide was synthesized using solid-phase peptide synthesis methods. The synthetic scolopentide was confirmed by MS and HPLC. The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro. The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo. In the tumor xenograft experiments, qualified model mice (male 5-week-old BALB/c nude mice) were randomly divided into 2 groups (n = 6): The scolopentide group (0.15 mL/d, via intraperitoneal injection of synthetic scolopentide, 500 mg/kg/d) and the vehicle group (0.15 mL/d, via intraperitoneal injection of normal saline). The mice were euthanized by cervical dislocation after 14 d of continuous treatment. Mechanistically, flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro. A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro. Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4 (DR4) and DR5. qRT-PCR was used to measure the mRNA expression of DR4, DR5, fas-associated death domain protein (FADD), Caspase-8, Caspase-3, cytochrome c (Cyto-C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1β converting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice. Western blot assays were used to measure the protein expression of DR4, DR5, FADD, Caspase-8, Caspase-3, and Cyto-C in the tumor tissues. The reactive oxygen species (ROS) of tumor tissues were tested.
RESULTS In the process of purification, characterization and synthesis of scolopentide, the optimal enzymatic hydrolysis conditions (extract ratio: 5.86%, IC50: 0.310 mg/mL) were as follows: Trypsin at 0.1 g (300 U/g, centipede-trypsin ratio of 20:1), enzymolysis temperature of 46 °C, and enzymolysis time of 4 h, which was superior to freeze-thawing with liquid nitrogen (IC50: 3.07 mg/mL). A peptide with the strongest antihepatoma activity (scolopentide) was further purified through a Sephadex G-25 column (obtained A2) and two steps of HPLC (obtained B5 and C3). The molecular weight of the extracted scolopentide was 1018.997 Da, and the peptide sequence was RAQNHYCK, as characterized by QTOF MS and Mascot. Scolopentide was synthesized in vitro with a qualified molecular weight (1018.8 Da) and purity (98.014%), which was characterized by MS and HPLC. Extracted scolopentide still had an antineoplastic effect in vitro, which inhibited the proliferation of Eca-109 (IC50: 76.27 μg/mL), HepG2 (IC50: 22.06 μg/mL), and A549 (IC50: 35.13 μg/mL) cells, especially HepG2 cells. Synthetic scolopentide inhibited the proliferation of HepG2 cells (treated 6, 12, and 24 h) in a concentration-dependent manner in vitro, and the inhibitory effects were the strongest at 12 h (IC50: 208.11 μg/mL). Synthetic scolopentide also inhibited the tumor volume (Vehicle vs Scolopentide, P = 0.0003) and weight (Vehicle vs Scolopentide, P = 0.0022) in the tumor xenograft experiment. Mechanistically, flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01% (0 μg/mL), 12.13% (10 μg/mL), 16.52% (20 μg/mL), and 23.20% (40 μg/mL). Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells. Molecular docking suggested that scolopentide tightly bound to DR4 and DR5, and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol, respectively. In subcutaneous xenograft tumors from mice, quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD, caspase-8 and caspase-3 through a mitochondria-independent pathway.
CONCLUSION Scolopentide, an antihepatoma peptide purified from centipedes, may inspire new antihepatoma agents. Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.
Collapse
Affiliation(s)
- Yu-Xing Hu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhuo Liu
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhen Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ting Feng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing-Hong Zhou
- Department of Pediatric, Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen 518000, Guangdong Province, China
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Chun Yi
- Department of Pathology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- Department of Andrology, First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Pu-Hua Zeng
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Sha Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau 999078, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
3
|
Nwaji AR, Arieri O, Anyang AS, Nguedia K, Abiade EB, Forcados GE, Oladipo OO, Makama S, Elisha IL, Ozele N, Gotep JG. Natural toxins and One Health: a review. SCIENCE IN ONE HEALTH 2022; 1:100013. [PMID: 39076609 PMCID: PMC11262277 DOI: 10.1016/j.soh.2023.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 07/31/2024]
Abstract
Background The One Health concept considers the interconnectivity, interactions and interdependence of humans, animals and the environment. Humans, animals and other organisms are constantly exposed to a wide range of natural toxins present in the environment. Thus, there is growing concern about the potential detrimental effects that natural toxins could pose to achieve One Health. Interestingly, alkaloids, steroids and bioactive peptides obtained from natural toxins could be used for the development of therapeutic agents. Methodology Our literature search focused on the following keywords; toxins, One Health, microbial toxins, mycotoxins, phytotoxins, phycotoxins, insect toxins and toxin effects. Google Scholar, Science Direct, PubMed and Web of Science were the search engines used to obtain primary databases. We chose relevant full-text articles and review papers published in English language only. The research was done between July 2022 and January 2023. Results Natural toxins are poisonous substances comprising bioactive compounds produced by microorganisms, invertebrates, plants and animals. These compounds possess diverse structures and differ in biological function and toxicity, posing risks to human and animal health through the contamination of the environment, causing disease or death in certain cases. Findings from the articles reviewed revealed that effects of natural toxins on animals and humans gained more attention than the impact of natural toxins on the environment and lower organisms, irrespective of the significant roles that lower organisms play to maintain ecosystem balance. Also, systematic approaches for toxin control in the environment and utilization for beneficial purposes are inadequate in many regions. Remarkably, bioactive compounds present in natural toxins have potential for the development of therapeutic agents. These findings suggest that global, comprehensive and coordinated efforts are required for improved management of natural toxins through an interdisciplinary, One Health approach. Conclusion Adopting a One Health approach is critical to addressing the effects of natural toxins on the health of humans, animals and the environment.
Collapse
Affiliation(s)
- Azubuike Raphael Nwaji
- Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Onikisateinba Arieri
- Department of Industrial Chemistry and Petrochemical Technology, Faculty of Science Laboratory, University of Portharcourt, Nigeria
| | | | - Kaze Nguedia
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Cameroon
| | | | | | | | - Sunday Makama
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ishaku Leo Elisha
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nonyelim Ozele
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Jurbe Gofwan Gotep
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
4
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
5
|
De Lucca Caetano LH, Nishiyama-Jr MY, de Carvalho Lins Fernandes Távora B, de Oliveira UC, de Loiola Meirelles Junqueira-de-Azevedo I, Faquim-Mauro EL, Magalhães GS. Recombinant Production and Characterization of a New Toxin from Cryptops iheringi Centipede Venom Revealed by Proteome and Transcriptome Analysis. Toxins (Basel) 2021; 13:858. [PMID: 34941696 PMCID: PMC8704451 DOI: 10.3390/toxins13120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.
Collapse
Affiliation(s)
- Lhiri Hanna De Lucca Caetano
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Geraldo Santana Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| |
Collapse
|
6
|
Wu XF, Li C, Yang G, Wang YZ, Peng Y, Zhu DD, Sui AR, Wu Q, Li QF, Wang B, Li N, Zhang Y, Ge BY, Zhao J, Li S. Scorpion Venom Heat-Resistant Peptide Attenuates Microglia Activation and Neuroinflammation. Front Pharmacol 2021; 12:704715. [PMID: 34675802 PMCID: PMC8524240 DOI: 10.3389/fphar.2021.704715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Intervention of neuroinflammation in central nervous system (CNS) represents a potential therapeutic strategy for a host of brain disorders. The scorpion Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown to reduce seizure susceptibility in a rat epileptic model and protect against cerebral ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present study aimed to investigate whether SVHRP has anti-inflammatory property in brain. Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS) injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal injection) on inflammagen-induced expression of pro-inflammatory factors and microglia activation. The effect of SVHRP (2–20 μg/ml) on neuroinflammation was further investigated in primary brain cell cultures containing microglia as well as the immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in hippocampus of animals. Protein levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology in animal hippocampus or cell cultures and cellular distribution of p65 were shown by immunostaining. Results: Morphological study demonstrated that activation of microglia, the main component that mediates the neuroinflammatory process, was inhibited by SVHRP in both LPS mouse and cellular model. Our results also showed dramatic increases in the expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by SVHRP. Conclusion: Our study demonstrates that SVHRP is able to inhibit neuroinflammation and microglia activation, which may underlie the therapeutic effects of BmK-derived materials, suggesting that BmK venom could be a potential source for CNS drug development.
Collapse
Affiliation(s)
- Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Chun Li
- Reproductive Medicine Centre, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Guang Yang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Zi Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yan Peng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dan-Dan Zhu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
V V, Achar RR, M.U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021; 2:329-340. [PMID: 34604795 PMCID: PMC8473576 DOI: 10.1016/j.crtox.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Venom peptides have been evolving complex therapeutic interventions that potently and selectively modulate a range of targets such as ion channels, receptors, and signaling pathways of physiological processes making it potential therapeutic. Several venom peptides were deduced in vivo for clinical development targeting pain management, diabetes, cardiovascular diseases, antimicrobial activity. Several contributions have been detailed for a clear perspective for a better understanding of venomous animals, their venom, and their pharmacological effects. Here we unravel and summarize the recent advances in wide venom peptides across varieties of species for their therapeutics prospects.
Collapse
Affiliation(s)
- Vidya V
- K. S Hegde Medical Academy, NITTE (Deemed to be) University, Mangalore 575015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Himathi M.U
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Akshita N
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Yogish Somayaji T
- Department of Post Graduate Studies and Research in Biochemistry, St. Aloysius College (Autonomous), Mangalore 575003, Karnataka, India
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara-571448, Nangamangala, Mandya, India
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
| | - K. Byrappa
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
- Center for Material Science and Technology, Vijnana Bhavan, University of Mysore, Mysuru, Karnataka, India
| | - Dinesha Ramadas
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, B.G. Nagara-571448, Nagamangala, Mandya, India
| |
Collapse
|
8
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
9
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
10
|
Liu ZC, Liang JY, Lan XQ, Li T, Zhang JR, Zhao F, Li G, Chen PY, Zhang Y, Lee WH, Zhao F. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zool Res 2020; 41:138-147. [PMID: 31945809 PMCID: PMC7109010 DOI: 10.24272/j.issn.2095-8137.2020.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.
Collapse
Affiliation(s)
- Zi-Chao Liu
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agronomy and Life Sciences, Kunming University, Kunming, Yunnan 650214, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xin-Qiang Lan
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tao Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Jia-Rui Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Nanshan College, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Fang Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Geng Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Pei-Yi Chen
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail: leewh@mail. kiz.ac.cn
| | - Feng Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
11
|
Robles JTD, Valverde FF, Cisneros LV, Villeda JH, Sánchez-Reyes A, Gutiérrez MDC. Mitochondrial activity disruption and local muscle damage induced in mice by Scolopendra polymorpha venom. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190079. [PMID: 32536942 PMCID: PMC7269145 DOI: 10.1590/1678-9199-jvatitd-2019-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Scolopendra polymorpha (S. polymorpha) is a predatory centipede whose venom contains a multiplicity of biochemical effectors that can cause muscle damage and cumulative cell destruction in its prey. Despite previous investigations of S. polymorpha and other centipede venoms, there is a lack of information on the morphological and biochemical patterns elicited by their myotoxic effects. To elucidate these processes, this paper presents evidence of skeletal muscle damage, and alterations in key biochemical mediators that appear only after exposure to centipede venom. Methods: Venom was collected and fractionated using RP-HPLC; mouse extensor digitorum longus (EDL) muscle was exposed to whole venom and venom fractions to evaluate myotoxicity by means of creatine kinase (CK) - a muscle damage marker - activity measurements and histochemical analysis. Results: CK activity was higher in EDL muscle exposed to venom than in unexposed muscle. This increase was observed after 15 min of venom incubation, and remained stable up to 45 min. Venom-exposed EDL muscle showed signs of muscle damage including necrosis, loss of fascicular structure as well as mitochondrial accumulations and ragged red fibers (RRF), suggesting an impairment in the normal mitochondrial arrangement. Nicotinamide adenine dinucleotide (NADH) and cytochrome oxidase (COX) tests also indicate that respiratory complexes might be affected. Conclusion: Our results suggest a different biochemical composition of S. polymorpha venom, based on the different effects of four venom fractions on the cells tested, according to statistical evidence. Fractions F6 and F7 caused the most important alterations.
Collapse
Affiliation(s)
- Judith Tabullo De Robles
- Center of Biotechnology Research, Autonomous University of the State of Morelos (UAEM), Cuernavaca, Mexico
| | | | - Lucero Valladares Cisneros
- Center of Biotechnology Research, Autonomous University of the State of Morelos (UAEM), Cuernavaca, Mexico
| | | | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - María Del Carmen Gutiérrez
- Center of Biotechnology Research, Autonomous University of the State of Morelos (UAEM), Cuernavaca, Mexico
| |
Collapse
|
12
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
13
|
Senetra AS, Necelis MR, Caputo GA. Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Pept Sci (Hoboken) 2020; 112:e24162. [PMID: 33937618 PMCID: PMC8086892 DOI: 10.1002/pep2.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Naturally derived antimicrobial peptides have been an area of great interest because of high selectivity against bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. There are also a significant number of venom-derived peptides that exhibit antimicrobial activity in addition to activity against mammals or other organisms. Many venom peptides share the same net cationic, amphiphilic nature as host-defense peptides, making them an attractive target for development as potential antibacterial agents. The peptide ponericin L1 derived from Neoponera goeldii was used as a model to investigate the role of cationic residues and net charge on peptide activity. Using a combination of spectroscopic and microbiological approaches, the role of cationic residues and net charge on antibacterial activity, lipid bilayer interactions, and bilayer and membrane permeabilization were investigated. The L1 peptide and derivatives all showed enhanced binding to lipid vesicles containing anionic lipids, but still bound to zwitterionic vesicles. None of the derivatives were especially effective at permeabilizing lipid bilayers in model vesicles, in-tact Escherichia coli, or human red blood cells. Taken together the results indicate that the lack of facial amphiphilicity regarding charge segregation may impact the ability of the L1 peptides to effectively permeabilize bilayers despite effective binding. Additionally, increasing the net charge of the peptide by replacing the lone anionic residue with either Gln or Lys dramatically improved efficacy against several bacterial strains without increasing hemolytic activity.
Collapse
Affiliation(s)
- Alexandria S. Senetra
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Matthew R. Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, U.S.A
| |
Collapse
|
14
|
Hu C, Wang S, Huang B, Liu H, Xu L, Zhigang Hu, Liu Y. The complete mitochondrial genome sequence of Scolopendra mutilans L. Koch, 1878 (Scolopendromorpha, Scolopendridae), with a comparative analysis of other centipede genomes. Zookeys 2020; 925:73-88. [PMID: 32390741 PMCID: PMC7197263 DOI: 10.3897/zookeys.925.47820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Scolopendramutilans L. Koch, 1878 is an important Chinese animal with thousands of years of medicinal history. However, the genomic information of this species is limited, which hinders its further application. Here, the complete mitochondrial genome (mitogenome) of S.mutilans was sequenced and assembled by next-generation sequencing. The genome is 15,011 bp in length, consisting of 13 protein-coding genes (PCGs), 14 tRNA genes, and two rRNA genes. Most PCGs start with the ATN initiation codon, and all PCGs have the conventional stop codons TAA and TAG. The S.mutilans mitogenome revealed nine simple sequence repeats (SSRs), and an obviously lower GC content compared with other seven centipede mitogenomes previously sequenced. After analysis of homologous regions between the eight centipede mitogenomes, the S.mutilans mitogenome further showed clear genomic rearrangements. The phylogenetic analysis of eight centipedes using 13 conserved PCG genes was finally performed. The phylogenetic reconstructions showed Scutigeromorpha as a separate group, and Scolopendromorpha in a sister-group relationship with Lithobiomorpha and Geophilomorpha. Collectively, the S.mutilans mitogenome provided new genomic resources, which will improve its medicinal research and applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Hu
- College of Pharmacy.,Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, China
| | | |
Collapse
|
15
|
Chu Y, Qiu P, Yu R. Centipede Venom Peptides Acting on Ion Channels. Toxins (Basel) 2020; 12:toxins12040230. [PMID: 32260499 PMCID: PMC7232367 DOI: 10.3390/toxins12040230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Centipedes are among the oldest venomous arthropods that use their venom to subdue the prey. The major components of centipede venom are a variety of low-molecular-weight peptide toxins that have evolved to target voltage-gated ion channels to interfere with the central system of prey and produce pain or paralysis for efficient hunting. Peptide toxins usually contain several intramolecular disulfide bonds, which confer chemical, thermal and biological stability. In addition, centipede peptides generally have novel structures and high potency and specificity and therefore hold great promise both as diagnostic tools and in the treatment of human disease. Here, we review the centipede peptide toxins with reported effects on ion channels, including Nav, Kv, Cav and the nonselective cation channel polymodal transient receptor potential vanilloid 1 (TRPV1).
Collapse
Affiliation(s)
- YanYan Chu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Correspondence: (Y.C.); (R.Y.)
| | - PeiJu Qiu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - RiLei Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence: (Y.C.); (R.Y.)
| |
Collapse
|
16
|
Robles JTD, Valverde FF, Cisneros LV, Villeda JH, Sánchez-Reyes A, Gutiérrez MDC. Mitochondrial activity disruption and local muscle damage induced in mice by Scolopendra polymorpha venom. J Venom Anim Toxins Incl Trop Dis 2020. [DOI: 10.1590/1678-9199-vatitd-2019-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|
19
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
20
|
Dash TS, Shafee T, Harvey PJ, Zhang C, Peigneur S, Deuis JR, Vetter I, Tytgat J, Anderson MA, Craik DJ, Durek T, Undheim EAB. A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure 2018; 27:315-326.e7. [PMID: 30554841 DOI: 10.1016/j.str.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Disulfide-rich peptides (DRPs) play diverse physiological roles and have emerged as attractive sources of pharmacological tools and drug leads. Here we describe the 3D structure of a centipede venom peptide, U-SLPTX15-Sm2a, whose family defines a unique class of one of the most widespread DRP folds known, the cystine-stabilized α/β fold (CSαβ). This class, which we have named the two-disulfide CSαβ fold (2ds-CSαβ), contains only two internal disulfide bonds as opposed to at least three in all other confirmed CSαβ peptides, and constitutes one of the major neurotoxic peptide families in centipede venoms. We show the 2ds-CSαβ is widely distributed outside centipedes and is likely an ancient fold predating the split between prokaryotes and eukaryotes. Our results provide insights into the ancient evolutionary history of a widespread DRP fold and highlight the usefulness of 3D structures as evolutionary tools.
Collapse
Affiliation(s)
- Thomas S Dash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Marilyn A Anderson
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Abstract
The millions of extant arthropod species are testament to their evolutionary success that can at least partially be attributed to venom usage, which evolved independently in at least 19 arthropod lineages. While some arthropods primarily use venom for predation (e.g., spiders and centipedes) or defense (e.g., bees and caterpillars), it can also have more specialised functions (e.g. in parasitoid wasps to paralyse arthropods for their brood to feed on) or even a combination of functions (e.g. the scorpion Parabuthus transvaalicus can deliver a prevenom for predator deterrence and a venom for predation). Most arthropod venoms are complex cocktails of water, salts, small bioactive molecules, peptides, enzymes and larger proteins, with peptides usually comprising the majority of toxins. Some spider venoms have been reported to contain >1000 peptide toxins, which function as combinatorial libraries to provide an evolutionary advantage. The astounding diversity of venomous arthropods multiplied by their enormous toxin arsenals results in an almost infinite resource for novel bioactive molecules. The main challenge for exploiting this resource is the small size of most arthropods, which can be a limitation for current venom extraction techniques. Fortunately, recent decades have seen an incredible improvement in transcriptomic and proteomic techniques that have provided increasing sensitivity while reducing sample requirements. In turn, this has provided a much larger variety of arthropod venom compounds for potential applications such as therapeutics, molecular probes for basic research, bioinsecticides or anti-parasitic drugs. This special issue of Toxicon aims to cover the breadth of arthropod venom research, including toxin evolution, pharmacology, toxin discovery and characterisation, toxin structures, clinical aspects, and potential applications.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
22
|
Ombati R, Luo L, Yang S, Lai R. Centipede envenomation: Clinical importance and the underlying molecular mechanisms. Toxicon 2018; 154:60-68. [DOI: 10.1016/j.toxicon.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
|
23
|
Karam-Gemael M, Izzo TJ, Chagas A. Why be red listed? Threatened Myriapoda species in Brazil with implications for their conservation. Zookeys 2018:255-269. [PMID: 29706779 PMCID: PMC5904424 DOI: 10.3897/zookeys.741.21971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
The biodiversity crisis we live in, marked by high extinction rates, requires well-planned conservation efforts. To overcome this issue, red lists of threatened species are recognized as the main objective approach for evaluating the conservation status of species and therefore guiding conservation priorities. This work focuses on the Myriapoda (Chilopoda and Diplopoda) species listed in the Brazilian red list of fauna to enable discussion of the practical implications of red lists for conservation. Almost all myriapods assessed are endemic to Brazil (99 %) and 73 % are known from subterranean habitats only. Despite of 33 % being recorded from protected areas (PAs), downgrading, degazettement or downsizing of PAs and intense and unregulated ecotourism represent great threats. The PAs network in Brazil tends to fail in conserving myriapod species. The number of data deficient species (42 %) states the need of investing in ecological and taxonomic studies about the group, in order to fill in important knowledge gaps in species assessments nationally and globally. In this work we show that there is a lack of communication between national and global agencies concerning red lists, which results in a significant loss for science and for conservation. Despite investing in national and state red lists, individual countries must take the final step of submitting its data to IUCN global database, as significant international funding is available for IUCN red listed species conservation. Being one of the most diverse countries in the world, and facing the biggest cuts ever on national science funding, losing these important funding opportunities is a huge loss for Brazilian biodiversity conservation and for science. This study raises awareness on subterranean habitats conservation, due to its high endemism and fragility. Since the first edition of the Brazilian Red List in 1968, centipedes are now included for the first time, and millipedes for the second time. The presence of these myriapods in the list brings attention to the group, which usually receives little or no attention in conservation programs and environmental impact assessments. Rather than a specific case for Myriapoda and for Brazil, the points discussed here can be related to arthropods and the tropics, as the most biodiverse countries are emerging economies facing similar challenges in PAs network management, species extinction risks and science funding.
Collapse
Affiliation(s)
- Manoela Karam-Gemael
- Programa de Pós Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil
| | - Thiago Junqueira Izzo
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil
| | - Amazonas Chagas
- Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil
| |
Collapse
|
24
|
True Lies: Using Proteomics to Assess the Accuracy of Transcriptome-Based Venomics in Centipedes Uncovers False Positives and Reveals Startling Intraspecific Variation in Scolopendra Subspinipes. Toxins (Basel) 2018; 10:toxins10030096. [PMID: 29495554 PMCID: PMC5869384 DOI: 10.3390/toxins10030096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022] Open
Abstract
Centipede venoms have emerged as a rich source of novel bioactive compounds. However, most centipede species are commonly considered too small for venom extraction and transcriptomics is likely to be an attractive way of probing the molecular diversity of these venoms. Examining the venom composition of Scolopendra subspinipes, we test the accuracy of this approach. We compared the proteomically determined venom profile with four common toxin transcriptomic toxin annotation approaches: BLAST search against toxins in UniProt, lineage-specific toxins, or species-specific toxins and comparative expression analyses of venom and non-venom producing tissues. This demonstrated that even toxin annotation based on lineage-specific homology searches is prone to substantial errors compared to a proteomic approach. However, combined comparative transcriptomics and phylogenetic analysis of putative toxin families substantially improves annotation accuracy. Furthermore, comparison of the venom composition of S. subspinipes with the closely related S. subspinipes mutilans revealed a surprising lack of overlap. This first insight into the intraspecific venom variability of centipedes contrasts the sequence conservation expected from previous findings that centipede toxins evolve under strong negative selection. Our results highlight the importance of proteomic data in studies of even comparably well-characterized venoms and warrants caution when sourcing venom from centipedes of unknown origin.
Collapse
|
25
|
Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. Proteotranscriptomic Analysis and Discovery of the Profile and Diversity of Toxin-like Proteins in Centipede. Mol Cell Proteomics 2018; 17:709-720. [PMID: 29339413 DOI: 10.1074/mcp.ra117.000431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Centipedes are one of the oldest venomous animals and use their venoms as weapons to attack prey or protect themselves. Their venoms contain various components with different biomedical and pharmacological properties. However, little attention has been paid to the profiles and diversity of their toxin-like proteins/peptides. In this study, we used a proteotranscriptomic approach to uncover the diversity of centipede toxin-like proteins in Scolopendra subspinipes mutilans Nine hundred twenty-three and 6,736 peptides, which were separately isolated from venom and torso tissues, respectively, were identified by ESI-MS/MS and deduced from their transcriptomes. Finally, 1369 unique proteins were identified in the proteome, including 100 proteins that exhibited overlapping expression in venom and torso tissues. Of these proteins, at least 40 proteins were identified as venom toxin-like proteins. Meanwhile, transcriptome mining identified ∼10-fold more toxin-like proteins and enabled the characterization of the precursor architecture of mature toxin-like peptides. Importantly, combined with proteomic and transcriptomic analyses, 25 toxin-like proteins/peptides (neurotoxins accounted for 50%) were expressed outside the venom gland and involved in gene recruitment processes. These findings highlight the extensive diversity of centipede toxin-like proteins and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins. Moreover, we are the first group to report the gene recruitment activity of venom toxin-like proteins in centipede, similar to snakes.
Collapse
Affiliation(s)
- Feng Zhao
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China; .,§Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Xinqiang Lan
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China.,‖Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tao Li
- §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Yang Xiang
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China
| | - Fang Zhao
- §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Yun Zhang
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China; .,**Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Hui Lee
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China;
| |
Collapse
|
26
|
Geron M, Hazan A, Priel A. Animal Toxins Providing Insights into TRPV1 Activation Mechanism. Toxins (Basel) 2017; 9:toxins9100326. [PMID: 29035314 PMCID: PMC5666373 DOI: 10.3390/toxins9100326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond providing evolutionary advantages, venoms offer unique research tools, as they were developed to target functionally important proteins and pathways. As a key pain receptor in the nociceptive pathway, transient receptor potential vanilloid 1 (TRPV1) of the TRP superfamily has been shown to be a target for several toxins, as a way of producing pain to deter predators. Importantly, TRPV1 is involved in thermoregulation, inflammation, and acute nociception. As such, toxins provide tools to understand TRPV1 activation and modulation, a critical step in advancing pain research and the development of novel analgesics. Indeed, the phytotoxin capsaicin, which is the spicy chemical in chili peppers, was invaluable in the original cloning and characterization of TRPV1. The unique properties of each subsequently characterized toxin have continued to advance our understanding of functional, structural, and biophysical characteristics of TRPV1. By building on previous reviews, this work aims to provide a comprehensive summary of the advancements made in TRPV1 research in recent years by employing animal toxins, in particular DkTx, RhTx, BmP01, Echis coloratus toxins, APHCs and HCRG21. We examine each toxin’s functional aspects, behavioral effects, and structural features, all of which have contributed to our current knowledge of TRPV1. We additionally discuss the key features of TRPV1’s outer pore domain, which proves to be the target of the currently discussed toxins.
Collapse
Affiliation(s)
- Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Adina Hazan
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|