1
|
Yoelin S, Hooper D. New and Future Developments in Neurotoxins. Dermatol Surg 2024; 50:S112-S116. [PMID: 39196844 DOI: 10.1097/dss.0000000000004346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND There are 7 known serotypes of botulinum neurotoxins (A through G). Currently, commercially available toxins are those in serotypes A and B. This paper will discuss new toxins on the horizon, developments in prolonging and shortening the duration of outcomes, and novel therapeutic indications on the horizon. OBJECTIVE To provide insight into new toxins and new therapeutic modalities surrounding toxins on the horizon. METHODS The authors have reviewed the relevant literature and shared their insights and opinions as to future developments in toxin research and potential clinical applications. CONCLUSION Botulinum neurotoxin type E's faster onset and shorter duration of effect represent true clinical differentiators. Future development of botulinum neurotoxin type E for aesthetic and therapeutic uses will be in areas where fast onset and short duration of effect are desirable. Current challenges with neuromodulators include the need for frequent treatments and lack of reversal agents. Agents to address both challenges and novel indications, including inhibition of melanogenesis, are being developed.
Collapse
Affiliation(s)
- Steve Yoelin
- Medical Associates, Inc., Newport Beach, California
| | | |
Collapse
|
2
|
Piccini JP, Ahlsson A, Dorian P, Gillinov AM, Kowey PR, Mack MJ, Milano CA, Noiseux N, Perrault LP, Ryan W, Steinberg JS, Voisine P, Waldron NH, Gleason KJ, Titanji W, Leaback RD, O'Sullivan A, Ferguson WG, Benussi S. Efficacy and Safety of Botulinum Toxin Type A for the Prevention of Postoperative Atrial Fibrillation. JACC Clin Electrophysiol 2024; 10:930-940. [PMID: 38661602 DOI: 10.1016/j.jacep.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) is associated with increased morbidity and mortality. Epicardial injection of botulinum toxin may suppress POAF. OBJECTIVES This study sought to assess the safety and efficacy of AGN-151607 for the prevention of POAF after cardiac surgery. METHODS This phase 2, randomized, placebo-controlled trial assessed the safety and efficacy of AGN-151607, 125 U and 250 U vs placebo (1:1:1), for the prevention of POAF after cardiac surgery. Randomization was stratified by age (<65, ≥65 years) and type of surgery (nonvalvular/valve surgery). The primary endpoint was the occurrence of continuous AF ≥30 seconds. RESULTS Among 312 modified intention-to-treat participants (placebo, n = 102; 125 U, n = 104; and 250 U, n = 106), the mean age was 66.9 ± 6.8 years; 17% were female; and 64% had coronary artery bypass graft (CABG) only, 12% had CABG + valve, and 24% had valve surgery. The primary endpoint occurred in 46.1% of the placebo group, 36.5% of the 125-U group (relative risk [RR] vs placebo: 0.80; 95% CI: 0.58-1.10; P = 0.16), and 47.2% of the 250-U group (RR vs placebo: 1.04; 95% CI: 0.79-1.37; P = 0.78). The primary endpoint was reduced in the 125-U group in those ≥65 years of age (RR: 0.64; 95% CI: 0.43-0.94; P = 0.02) with a greater reduction in CABG-only participants ≥65 years of age (RR: 0.49; 95% CI: 0.27-0.87; P = 0.01). Rehospitalization and rates of adverse events were similar across the 3 groups. CONCLUSIONS There were no significant differences in the rate of POAF with either dose compared with placebo; however, there was a lower rate of POAF in participants ≥65 years undergoing CABG only and receiving 125 U of AGN-151607. These hypothesis-generating findings require investigation in a larger, adequately powered randomized clinical trial. (Botulinum Toxin Type A [AGN-151607] for the Prevention of Post-operative Atrial Fibrillation in Adult Participants Undergoing Open-chest Cardiac Surgery [NOVA]; NCT03779841); A Phase 2, Multi-Center, Randomized, Double-Blind, Placebo-Controlled, Dose Ranging Study to Evaluate the Efficacy and Safety of Botulinum Toxin Type A [AGN 151607] Injections into the Epicardial Fat Pads to Prevent Post-Operative Atrial Fibrillation in Patients Undergoing Open-Chest Cardiac Surgery; 2017-004399-68).
Collapse
Affiliation(s)
- Jonathan P Piccini
- Department of Electrophysiology, Duke Clinical Research Institute/Duke University Medical Center, Durham, North Carolina, USA.
| | - Anders Ahlsson
- Cardiovascular Division, Karolinska Institute, Stockholm, Sweden
| | - Paul Dorian
- Division of Cardiology, St Michael's Hospital, Toronto, Ontario, Canada
| | - A Marc Gillinov
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peter R Kowey
- Division of Cardiovascular Research, Lankenau Heart Institute, Wynnewood, Pennsylvania, USA
| | - Michael J Mack
- Department of Thoracic Surgery, Baylor Scott and White Health, Dallas, Texas, USA
| | - Carmelo A Milano
- Division of Cardiothoracic Surgery, Duke Clinical Research Institute/Duke University Medical Center, Durham, North Carolina, USA
| | - Nicolas Noiseux
- Division of Cardiac Surgery, Centre Hospitalier de l'Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| | - Louis P Perrault
- Department of Surgery, Montréal Heart Institute, Université de Montréal, Montréal, Quebec City, Quebec, Canada
| | - William Ryan
- Department of Thoracic Surgery, Baylor Scott and White Health, Dallas, Texas, USA
| | - Jonathan S Steinberg
- Clinical Cardiovascular Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pierre Voisine
- Division of Cardiac Surgery, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Nathan H Waldron
- Department of Anesthesiology and Critical Care, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | | | | | - Stefano Benussi
- Department of Cardiothoracic Surgery, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Wang S, Wang D, Shen WT, Kai M, Yu Y, Peng Y, Xian N, Fang RH, Gao W, Zhang L. Protein-Loaded Cellular Nanosponges for Dual-Biomimicry Neurotoxin Countermeasure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309635. [PMID: 37990378 DOI: 10.1002/smll.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Neurotoxins present a substantial threat to human health and security as they disrupt and damage the nervous system. Their potent and structurally diverse nature poses challenges in developing effective countermeasures. In this study, a unique nanoparticle design that combines dual-biomimicry mechanisms to enhance the detoxification efficacy of neurotoxins is introduced. Using saxitoxin (STX), one of the deadliest neurotoxins, and its natural binding protein saxiphilin (Sxph) as a model system, human neuronal membrane-coated and Sxph-loaded metal-organic framework (MOF) nanosponges (denoted "Neuron-MOF/Sxph-NS") are successfully developed. The resulting Neuron-MOF/Sxph-NS exhibit a biomimetic design that not only emulates host neurons for function-based detoxification through the neuronal membrane coating, but also mimics toxin-resistant organisms by encapsulating the Sxph protein within the nanoparticle core. The comprehensive in vitro assays, including cell osmotic swelling, calcium flux, and cytotoxicity assays, demonstrate the improved detoxification efficacy of Neuron-MOF/Sxph-NS. Furthermore, in mouse models of STX intoxication, the application of Neuron-MOF/Sxph-NS shows significant survival benefits in both therapeutic and prophylactic regimens, without any apparent acute toxicity. Overall, the development of Neuron-MOF/Sxph-NS represents an important advancement in neurotoxin detoxification, offering promising potential for treating injuries and diseases caused by neurotoxins and addressing the current limitations in neurotoxin countermeasures.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Silkina MV, Kartseva AS, Riabko AK, Makarova MA, Rogozin MM, Romanenko YO, Shemyakin IG, Dyatlov IA, Firstova VV. New approach to generating of human monoclonal antibodies specific to the proteolytic domain of botulinum neurotoxin A. BIOIMPACTS : BI 2023; 14:27680. [PMID: 39104622 PMCID: PMC11298023 DOI: 10.34172/bi.2023.27680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 08/07/2024]
Abstract
Introduction Botulinum neurotoxins (BoNTs) cause botulism and are the most potent natural toxins known. Immunotherapy with neutralizing monoclonal antibodies (MAbs) is considered to be the most effective immediate response to BoNT exposure. Hybridoma technology remains the preferred method for producing MAbs with naturally paired immunoglobulin genes and with preserved innate functions of immune cells. The affinity-matured human antibody repertoire may be ideal as a source for antibody therapeutics against BoNTs. In an effort to develop novel BoNT type A (BoNT/A) immunotherapeutics, sorted by flow cytometry plasmablasts and activated memory B cells from a donor repeatedly injected with BoNT/A for aesthetic botulinum therapy could be used due to obtain hybridomas producing native antibodies. Methods Plasmablasts and activated memory B-cells were isolated from whole blood collected 7 days after BoNT/A injection and sorted by flow cytometry. The sorted cells were then electrofused with the K6H6/B5 cell line, resulting in a producer of native human monoclonal antibodies (huMAbs). The 3 antibodies obtained were then purified by affinity chromatography, analyzed for binding by Western blot assay and neutralization by FRET assay. Results We have succeeded in creating 3 hybridomas that secrete huMAbs specific to native BoNT/A and the proteolytic domain (LC) of BoNT/A. The 1B9 antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusion The use activated plasmablasts and memory B-cells isolated at the peak of the immune response (at day 7 of immunogenesis) that have not yet completed the terminal stage of differentiation but have undergone somatic hypermutation for hybridization allows us to obtain specific huMAbs even when the immune response of the donor is weak (with low levels of specific antibodies and specific B-cells in blood). A BoNT/A LC-specific antibody is capable of effectively inhibiting BoNT/A by mechanisms not previously associated with antibodies that neutralize BoNT. Antibodies specific to BoNT LC can be valuable components of a mixture of antibodies against BoNT exposure.
Collapse
Affiliation(s)
| | - Alena Sergeevna Kartseva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | | | | | - Yana Olegovna Romanenko
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | - Ivan Alekseevich Dyatlov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | |
Collapse
|
5
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
6
|
Fan Y, Lou J, Tam CC, Wen W, Conrad F, Leal da Silva Alves P, Cheng LW, Garcia-Rodriguez C, Farr-Jones S, Marks JD. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins (Basel) 2023; 15:toxins15050316. [PMID: 37235351 DOI: 10.3390/toxins15050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Equine-derived antitoxin (BAT®) is the only treatment for botulism from botulinum neurotoxin serotype G (BoNT/G). BAT® is a foreign protein with potentially severe adverse effects and is not renewable. To develop a safe, more potent, and renewable antitoxin, humanized monoclonal antibodies (mAbs) were generated. Yeast displayed single chain Fv (scFv) libraries were prepared from mice immunized with BoNT/G and BoNT/G domains and screened with BoNT/G using fluorescence-activated cell sorting (FACS). Fourteen scFv-binding BoNT/G were isolated with KD values ranging from 3.86 nM to 103 nM (median KD 20.9 nM). Five mAb-binding non-overlapping epitopes were humanized and affinity matured to create antibodies hu6G6.2, hu6G7.2, hu6G9.1, hu6G10, and hu6G11.2, with IgG KD values ranging from 51 pM to 8 pM. Three IgG combinations completely protected mice challenged with 10,000 LD50s of BoNT/G at a total mAb dose of 6.25 μg per mouse. The mAb combinations have the potential for use in the diagnosis and treatment of botulism due to serotype G and, along with antibody combinations to BoNT/A, B, C, D, E, and F, provide the basis for a fully recombinant heptavalent botulinum antitoxin to replace the legacy equine product.
Collapse
Affiliation(s)
- Yongfeng Fan
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Christina C Tam
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Fraser Conrad
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Priscila Leal da Silva Alves
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Luisa W Cheng
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Consuelo Garcia-Rodriguez
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| |
Collapse
|
7
|
Cho TH, Won SY, Yang HM. Delineation and histological examination of the intramuscular innervation of the platysma: Application to botulinum neurotoxin injection. Clin Anat 2023; 36:277-284. [PMID: 36479919 DOI: 10.1002/ca.23984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to identify the whole innervation pattern of the platysma using the Sihler's staining, and the axonal composition profile of the sensory-motor anastomosis identified by immunofluorescence assays. The findings provide a comprehensive understanding of the neural anatomy of the platysma and facilitate efficient and safe manipulation for neurotoxin injection. Ten fixed and two fresh hemifaces were included in this study. Sihler's staining was used to the study 10 fixed hemifaces and two fresh hemifaces were used for immunofluorescence assays. In all cases, the cervical branch of facial nerve (Cbr) broadly innervated the platysma, and the marginal mandibular branch of facial nerve (MMbr) provided supplementary innervation to the uppermost part of the platysma. The transverse cervical nerve (TCN), great auricular nerve (GAN), and supraclavicular nerve (SCN) were observed in the lower half of the platysma. In 30% of all cases, there was a communicating loop between the Cbr and TCN. In 20% of all the cases, a communicating branch joined between the Cbr and GAN. For successful esthetic rejuvenation procedures, a clinician should consider the Cbr distribution to the overall platysma and additionally innervation by individual nerves (MMbr, GAN, TCN, and SCN) to the middle and lower portions of the platysma muscle.
Collapse
Affiliation(s)
- Tae-Hyeon Cho
- Translational Laboratory for Clinical Anatomy, Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yoon Won
- Department of Occupational Therapy, Semyung Universitiy, Jecheon, Republic of Korea
| | - Hun-Mu Yang
- Translational Laboratory for Clinical Anatomy, Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Surgical Anatomy Education Centre, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222:106989. [PMID: 36509264 DOI: 10.1016/j.toxicon.2022.106989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Despite the abundance of promising studies, developments, and improvements about the elimination of microbial toxins from food matrices, they are still considered as one of the major food safety problems due to the lack of their complete avoidance even today. Every year, many crops and foodstuffs have to be discarded due to unconstrained contamination and/or production of microbial toxins. Furthermore, the difficulty for the detection of toxin presence and determination of its level in foods may lead to acute or chronic health problems in many individuals. On the other hand, phenolic compounds might be considered as microbial toxin detoxification agents because of their inhibition effect on the toxin synthesis of microorganisms or exhibiting protective effects against varying damaging mechanisms caused by toxins. In this study, the effect of phenolic compounds on the synthesis of bacterial toxins and mycotoxins is comprehensively reviewed. The potential curing effect of phenolic compounds against toxin-induced damages has also been discussed. Consequently, phenolic compounds are indicated as promising, and considerable natural preservatives against toxin damages and their detoxification potentials are pronounced.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Hafik Kamer Ornek Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia nº 4, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, 32004 Ourense, Spain
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
9
|
Wang D, Ai X, Duan Y, Xian N, Fang RH, Gao W, Zhang L. Neuronal Cellular Nanosponges for Effective Detoxification of Neurotoxins. ACS NANO 2022; 16:19145-19154. [PMID: 36354967 DOI: 10.1021/acsnano.2c08319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotoxins attack and destruct the nervous system, which can cause serious health problems and security threats. Existing detoxification approaches, such as antibodies and small molecule antidotes, rely on neurotoxin's molecular structure as design cues and require toxin-specific development for each type of toxins. However, the enormous diversity of neurotoxins makes such structure-based development of antitoxin particularly challenging and inefficient. Here, we report on the development and use of neuronal membrane-coated nanosponges (denoted "Neuron-NS") as an effective approach to detoxifying neurotoxins. Specifically, Neuron-NS act as neuron decoys to lure neurotoxins, bind with and neutralize the toxins, and thus block them from attacking the host neuron cells. These nanosponges detoxify neurotoxins regardless of their molecular structures and therefore can overcome the challenge posed by toxin structural diversity. In the study, we fabricate Neuron-NS by coating the membrane of Neuro-2a cells onto polymeric cores. Meanwhile, we select tetrodotoxin (TTX) as a model neurotoxin and demonstrate the detoxification efficacy of the Neuron-NS in a cytotoxicity assay, a calcium flux assay, and a cell osmotic swelling assay in vitro. Additionally, in mouse models of TTX intoxication, the Neuron-NS significantly enhance mouse survival in therapeutic and prophylactic regimens without showing acute toxicity. Overall, the Neuron-NS contribute to the current detoxification arsenal with the potential to treat various injuries and diseases caused by neurotoxins.
Collapse
Affiliation(s)
- Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Liu J, Xu S, Huang C, Shen J, Yu S, Yu Y, Sun Q, Dai Q. Synthesis and activity evaluation of selenazole-coupled CPI-1 irreversible bifunctional inhibitors for botulinum toxin A light chain. Bioorg Med Chem Lett 2022; 73:128913. [PMID: 35914651 DOI: 10.1016/j.bmcl.2022.128913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
A series of novel conjugates of benzoselenazole or selenazole and CPI-1 were designed, synthesized, and evaluated for inhibitory activities against the botulinum neurotoxin A (BoNT/A) light chain (LC) and BoNT/A in vivo. The results show that these compounds exhibit potent inhibitory activities to the LC with IC50 of 0.5-4.1 µM. The reaction kinetics and the mass spectra of the reaction products of LC with benzoselenazole- or selenazole- coupled CPI-1 demonstrate that the benzoselenazole group of most inhibitors is coupled to the LC of BoNT/A. These data indicate that the CPI-1 conjugates can inhibit both the active center of BoNT/A LC as well as Cys165, therefore functioning as irreversible bifunctional inhibitors. The detoxification activities in vivo show that one of the benzoselenazole-CPI-1 compounds prolongs the survival time of mice challenged by 2 × LD50 of BoNT/A. This work provides a new strategy to design potent antidotes of BoNT/A.
Collapse
|
11
|
Machamer JB, Vazquez-Cintron EJ, O'Brien SW, Kelly KE, Altvater AC, Pagarigan KT, Dubee PB, Ondeck CA, McNutt PM. Antidotal treatment of botulism in rats by continuous infusion with 3,4-diaminopyridine. Mol Med 2022; 28:61. [PMID: 35659174 PMCID: PMC9164507 DOI: 10.1186/s10020-022-00487-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.
Collapse
Affiliation(s)
- James B Machamer
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- BASF, Research Triangle, Durham, NC, 27709, USA
| | | | - Sean W O'Brien
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Kyle E Kelly
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Amber C Altvater
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Kathleen T Pagarigan
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Parker B Dubee
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Celinia A Ondeck
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Patrick M McNutt
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
12
|
Fabris F, Šoštarić P, Matak I, Binz T, Toffan A, Simonato M, Montecucco C, Pirazzini M, Rossetto O. Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. Int J Mol Sci 2022; 23:ijms23084355. [PMID: 35457172 PMCID: PMC9024618 DOI: 10.3390/ijms23084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.
Collapse
Affiliation(s)
- Federico Fabris
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
| | - Petra Šoštarić
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Ivica Matak
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Morena Simonato
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| |
Collapse
|
13
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
14
|
Piccini JP, Ahlsson A, Dorian P, Gillinov MA, Kowey PR, Mack MJ, Milano CA, Perrault LP, Steinberg JS, Waldron NH, Adams LM, Bharucha DB, Brin MF, Ferguson WG, Benussi S. Design and Rationale of a Phase 2 Study of NeurOtoxin (Botulinum Toxin Type A) for the PreVention of Post-Operative Atrial Fibrillation - The NOVA Study. Am Heart J 2022; 245:51-59. [PMID: 34687654 DOI: 10.1016/j.ahj.2021.10.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Post-operative AF (POAF) is the most common complication following cardiac surgery, occurring in 30% to 60% of patients undergoing bypass and/or valve surgery. POAF is associated with longer intensive care unit/hospital stays, increased healthcare utilization, and increased morbidity and mortality. Injection of botulinum toxin type A into the epicardial fat pads resulted in reduction of AF in animal models, and in two clinical studies of cardiac surgery patients, without new safety observations. METHODS The objective of NOVA is to assess the use of AGN-151607 (botulinum toxin type A) for prevention of POAF in cardiac surgery patients. This randomized, multi-site, placebo-controlled trial will study one-time injections of AGN-151607 125 U (25 U / fat pad) and 250 U (50 U / fat pad) or placebo during cardiac surgery in ∼330 participants. Primary endpoint: % of patients with continuous AF ≥ 30 s. Secondary endpoints include several measures of AF frequency, duration, and burden. Additional endpoints include clinically important tachycardia during AF, time to AF termination, and healthcare utilization. Primary and secondary efficacy endpoints will be assessed using continuous ECG monitoring for 30 days following surgery. All patients will be followed for up to 1 year for safety. CONCLUSIONS The NOVA Study will test the hypothesis that injections of AGN-151607 will reduce the incidence of POAF and associated resource utilization. If demonstrated to be safe and effective, the availability of a one-time therapy for the prevention of POAF would represent an important treatment option for patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Jonathan P Piccini
- Duke Clinical Research Institute / Duke University Medical Center, Durham, NC.
| | | | | | | | | | | | | | | | | | - Nathan H Waldron
- Duke Clinical Research Institute / Duke University Medical Center, Durham, NC
| | | | | | | | | | | |
Collapse
|
15
|
Wang J, Wu Y, Luo D, Zhuang C, Ning N, Zhang Y, He Z, Gao J, Hong Z, Xv X, Zhang W, Li T, Miao Z, Wang H. Discovery of a Potent Botulinum Neurotoxin A Inhibitor
ZM299
with Effective Protections in Botulism Mice. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yuelin Wu
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Chunlin Zhuang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yanming Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Jie Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhanying Hong
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Xiguo Xv
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Wannian Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhenyuan Miao
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| |
Collapse
|
16
|
Zanetti G, Mattarei A, Lista F, Rossetto O, Montecucco C, Pirazzini M. Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals (Basel) 2021; 14:ph14111134. [PMID: 34832916 PMCID: PMC8618345 DOI: 10.3390/ph14111134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy;
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| |
Collapse
|
17
|
Li Y, Wang M, Tang S, Zhu X, Yang S. Localization of nerve entry points and the center of intramuscular nerve-dense regions in the adult pectoralis major and pectoralis minor and its significance in blocking muscle spasticity. J Anat 2021; 239:1123-1133. [PMID: 34176122 PMCID: PMC8546509 DOI: 10.1111/joa.13493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022] Open
Abstract
The aims of this study were to localize the body surface position and depth of nerve entry points, and the center of the intramuscular nerve-dense regions of the pectoralis major and pectoralis minor in order to provide guidance for blocking muscle spasticity. Formalin-fixed adult cadavers (66.3 ± 5.2 years) were used. The curved line on the skin from the acromion to the most inferior point of the jugular notch was defined as the horizontal reference line (H). The line from the most inferior point of the jugular notch to the xiphisternal joint was defined as the longitudinal reference line (L). The nerve entry points was anatomically exposed. Sihler's staining, barium sulfate labeling, and computed tomography were employed to determine the projection points (P) on the body surface. The intersection of the longitudinal line through the P point and the H line and the horizontal line through the P point and the L line were recorded as PH and PL , respectively. The projection of the nerve entry points or the center of the intramuscular nerve-dense regions were in the opposite direction across the transverse plane and were recorded as P'. The percentage positions of PH and PL on the H and L lines, as well as the nerve entry points and the center of the intramuscular nerve-dense regions depths, were determined using the Syngo system. The pectoralis major had two nerve entry points, while the pectoralis minor had only one. In addition, two intramuscular nerve-dense regions were found in the pectoralis major, while only one region was found in the pectoralis minor. The PH of the nerve entry points were located at 47.83%, 32.31%, and 34.31%, while the PH of the center of the intramuscular nerve-dense regions were at 41.95%, 55.88%, and 32.58% of line H, respectively. The PL of the nerve entry points were at -9.84%, 36.16%, and 2.44%, while the PL for each of three center of the intramuscular nerve-dense regions was at -3.87%, 25.29%, and -7.13% of line L, respectively. The depth for each of the nerve entry points was at 17.76%, 17.53%, and 25.51% of line P-P'', respectively, and the depth of the center of the intramuscular nerve-dense regions was at 5.23%, 6.75%, and 13.73% of line P-P', respectively. These percentage values are all means. The definition of the surface position and depth of these nerve entry points and center of the intramuscular nerve-dense regions can improve the localization efficiency and efficacy of target blocking for pectoralis major and minor spasticity.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Meng Wang
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| | - Shaohua Tang
- Department of Orthopaedics, Shijie Hospital, Dongguan, China
| | - Xiankun Zhu
- Department of Rehabilitation, Zunyi Medical University, Zunyi, China
| | - Shengbo Yang
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Amezcua M, Cruz RS, Ku A, Moran W, Ortega ME, Salzameda NT. Discovery of Dipeptides as Potent Botulinum Neurotoxin A Light-Chain Inhibitors. ACS Med Chem Lett 2021; 12:295-301. [PMID: 33603978 DOI: 10.1021/acsmedchemlett.0c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
The botulinum neurotoxin, the caustic agent that causes botulism, is the most lethal toxin known to man. The neurotoxin composed of a heavy chain (HC) and a light chain (LC) enters neurons and cleaves SNARE proteins, leading to flaccid paralysis, which, in severe occurrences, can result in death. A therapeutic target for botulinum neurotoxin (BoNT) intoxication is the LC, a zinc metalloprotease that directly cleaves SNARE proteins. Herein we report dipeptides containing an aromatic connected to the N-terminus via a sulfonamide and a hydroxamic acid at the C-terminus as BoNT/A LC inhibitors. On the basis of a structure-activity relationship study, 33 was discovered to inhibit the BoNT/A LC with an IC50 of 21 nM. X-ray crystallography analysis of 30 and 33 revealed that the dipeptides inhibit through a competitive mechanism and identified several key intermolecular interactions.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Ricardo S. Cruz
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Alex Ku
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Wilfred Moran
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Marcos E. Ortega
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Nicholas T. Salzameda
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| |
Collapse
|
19
|
McNutt PM, Vazquez-Cintron EJ, Tenezaca L, Ondeck CA, Kelly KE, Mangkhalakhili M, Machamer JB, Angeles CA, Glotfelty EJ, Cika J, Benjumea CH, Whitfield JT, Band PA, Shoemaker CB, Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci Transl Med 2021; 13:eabd7789. [PMID: 33408188 PMCID: PMC8176400 DOI: 10.1126/scitranslmed.abd7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Edwin J Vazquez-Cintron
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- City College of City University of New York, NY 10031, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle E Kelly
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Mangkhalakhili
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - James B Machamer
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliot J Glotfelty
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Cesar H Benjumea
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- Department of Orthopaedic Surgery, New York University Langone Orthopedic Hospital, New York, NY 10016, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Mir MA, Mehraj U, Sheikh BA, Hamdani SS. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Hum Antibodies 2020; 28:29-51. [PMID: 31322555 DOI: 10.3233/hab-190390] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibodies represent a well-established class of clinical diagnostics for medical applications as well as essential research and biotechnological tools. Although both polyclonal and monoclonal antibodies are indispensable reagents in basic research and diagnostics but both of them have their limitations. Hence, there is urgent need to develop strategies aimed at production of alternative scaffolds and recombinant antibodies of smaller dimensions that could be easily produced, selected and manipulated. Unlike conventional antibodies, members of Camelidae and sharks produce antibodies composed only of heavy chains with small size, high solubility, thermal stability, refolding capacity and good tissue penetration in vivo. The discovery of these naturally occurring antibodies having only heavy-chain in Camelidae family and their further development into small recombinant nanobodies represents an attractive alternative in drug delivery, diagnostics and imaging. Nanobody derivatives are soluble, stable, versatile, have unique refolding capacities, reduced aggregation tendencies and high-target binding capabilities. They can be genetically customized to target enzymes, transmembrane proteins or molecular interactions. Their ability to recognize recessed antigenic sites has been attributed to their smaller size and the ability of the extended CDR3 loop to quickly penetrate into such epitopes. With the advent of molecular engineering and phage display technology, they can be of potential use in molecular imaging, drug delivery and therapeutics for several major diseases. In this review we present the recent advances in nanobodies for modulating immune functions, for targeting cancers, viruses, toxins and microbes as well as their utility as diagnostic and biosensor tools.
Collapse
|
21
|
Winner BM, Bodt SML, McNutt PM. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int J Mol Sci 2020; 21:ijms21228715. [PMID: 33218099 PMCID: PMC7698961 DOI: 10.3390/ijms21228715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.
Collapse
Affiliation(s)
- Brittany M. Winner
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD 21047, USA;
| | - Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
- Correspondence:
| |
Collapse
|
22
|
Characterization of immune response induced against catalytic domain of botulinum neurotoxin type E. Sci Rep 2020; 10:13932. [PMID: 32811892 PMCID: PMC7434876 DOI: 10.1038/s41598-020-70929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) represent a family of bacterial toxins responsible for neuroparalytic disease 'botulism' in human and animals. Their potential use as biological weapon led to their classification in category 'A' biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. In present study, gene encoding full length catalytic domain of BoNT/E-LC was cloned, expressed and protein was purified using Ni-NTA chromatography. Humoral immune response was confirmed by Ig isotyping and cell-mediated immunity by cytokine profiling and intracellular staining for enumeration of IFN-γ secreting CD4+ and CD8+ T cells. Increased antibody titer with the predominance of IgG subtype was observed. An interaction between antibodies produced against rBoNT/E-LC was established that showed the specificity against BoNT/E in SPR assay. Animal protection with rBoNT/E-LC was conferred through both humoral and cellular immune responses. These findings were supported by cytokine profiling and flow cytometric analysis. Splenocytes stimulated with rBoNT/E-LC showed a 3.27 and 2.8 times increase in the IFN-γ secreting CD4+ and CD8+ T cells, respectively; in immunized group (P < 0.05). Protection against BoNT/E challenge tended to relate with increase in the percentage of rBoNT/E-LC specific IL-2 in the splenocytes supernatant (P = 0.034) and with IFN-γ-producing CD4+ T cell responses (P = 0.045). We have immunologically evaluated catalytically active rBoNT/E-LC. Our results provide valuable investigational report for immunoprophylactic role of catalytic domain of BoNT/E.
Collapse
|
23
|
Lonati D, Schicchi A, Crevani M, Buscaglia E, Scaravaggi G, Maida F, Cirronis M, Petrolini VM, Locatelli CA. Foodborne Botulism: Clinical Diagnosis and Medical Treatment. Toxins (Basel) 2020; 12:toxins12080509. [PMID: 32784744 PMCID: PMC7472133 DOI: 10.3390/toxins12080509] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by Clostridia species are the most potent identified natural toxins. Classically, the toxic neurological syndrome is characterized by an (afebrile) acute symmetric descending flaccid paralysis. The most know typical clinical syndrome of botulism refers to the foodborne form. All different forms are characterized by the same symptoms, caused by toxin-induced neuromuscular paralysis. The diagnosis of botulism is essentially clinical, as well as the decision to apply the specific antidotal treatment. The role of the laboratory is mandatory to confirm the clinical suspicion in relation to regulatory agencies, to identify the BoNTs involved and the source of intoxication. The laboratory diagnosis of foodborne botulism is based on the detection of BoNTs in clinical specimens/food samples and the isolation of BoNT from stools. Foodborne botulism intoxication is often underdiagnosed; the initial symptoms can be confused with more common clinical conditions (i.e., stroke, myasthenia gravis, Guillain–Barré syndrome—Miller–Fisher variant, Eaton–Lambert syndrome, tick paralysis and shellfish or tetrodotoxin poisoning). The treatment includes procedures for decontamination, antidote administration and, when required, support of respiratory function; few differences are related to the different way of exposure.
Collapse
Affiliation(s)
- Davide Lonati
- Correspondence: ; Tel.: +39-0382-26261; Fax: +39-0382-24605
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schenke M, Schjeide BM, Püschel GP, Seeger B. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays. Toxins (Basel) 2020; 12:toxins12050276. [PMID: 32344847 PMCID: PMC7291138 DOI: 10.3390/toxins12050276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins produced by bacteria, which inhibit neurotransmitter release, specifically in their physiological target known as motor neurons (MNs). For the potency assessment of BoNTs produced for treatment in traditional and aesthetic medicine, the mouse lethality assay is still used by the majority of manufacturers, which is ethically questionable in terms of the 3Rs principle. In this study, MNs were differentiated from human induced pluripotent stem cells based on three published protocols. The resulting cell populations were analyzed for their MN yield and their suitability for the potency assessment of BoNTs. MNs produce specific gangliosides and synaptic proteins, which are bound by BoNTs in order to be taken up by receptor-mediated endocytosis, which is followed by cleavage of specific soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins required for neurotransmitter release. The presence of receptors and substrates for all BoNT serotypes was demonstrated in MNs generated in vitro. In particular, the MN differentiation protocol based on Du et al. yielded high numbers of MNs in a short amount of time with high expression of BoNT receptors and targets. The resulting cells are more sensitive to BoNT/A1 than the commonly used neuroblastoma cell line SiMa. MNs are, therefore, an ideal tool for being combined with already established detection methods.
Collapse
Affiliation(s)
- Maren Schenke
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
| | - Brit-Maren Schjeide
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Gerhard P. Püschel
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Bettina Seeger
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
- Correspondence:
| |
Collapse
|
25
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
26
|
Cenciarelli O, Riley PW, Baka A. Biosecurity Threat Posed by Botulinum Toxin. Toxins (Basel) 2019; 11:toxins11120681. [PMID: 31757074 PMCID: PMC6950065 DOI: 10.3390/toxins11120681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
The deliberate release of biological agents with terrorist or criminal intent continues to pose concerns in the current geopolitical situation. Therefore, attention is still needed to ensure preparedness against the potential use of pathogens as unconventional weapons. Botulinum neurotoxin (BoNT) is one such biological threat, characterized by an extremely low lethal dose, high morbidity and mortality when appropriately disseminated, and the capacity to cause panic and social disruption. This paper addresses the risks of a potential release of the botulinum neurotoxin and summarizes the relevant aspects of the threat.
Collapse
|
27
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
28
|
Rasetti-Escargueil C, Popoff MR. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins (Basel) 2019; 11:toxins11090528. [PMID: 31547338 PMCID: PMC6783819 DOI: 10.3390/toxins11090528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is produced by the anaerobic, Gram-positive bacterium Clostridium botulinum. As one of the most poisonous toxins known and a potential bioterrosism agent, BoNT is characterized by a complex mode of action comprising: internalization, translocation and proteolytic cleavage of a substrate, which inhibits synaptic exocytotic transmitter release at neuro-muscular nerve endings leading to peripheral neuroparalysis of the skeletal and autonomic nervous systems. There are seven major serologically distinct toxinotypes (A-G) of BoNT which act on different substrates. Human botulism is generally caused by BoNT/A, B and E. Due to its extreme lethality and potential use as biological weapon, botulism remains a global public health concern. Vaccination against BoNT, although an effective strategy, remains undesirable due to the growing expectation around therapeutic use of BoNTs in various pathological conditions. This review focuses on the current approaches for botulism control by immunotherapy, highlighting the future challenges while the molecular underpinnings among subtypes variants and BoNT sequences found in non-clostridial species remain to be elucidated.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Michel R Popoff
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
29
|
Pereira C, Rodrigues IS, Pereira LMG, Lisboa J, Pinto RD, Araújo L, Oliveira P, Benz R, Dos Santos NMS, do Vale A. Role of AIP56 disulphide bond and its reduction by cytosolic redox systems for efficient intoxication. Cell Microbiol 2019; 22:e13109. [PMID: 31454143 DOI: 10.1111/cmi.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.
Collapse
Affiliation(s)
- Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Leonor Araújo
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Chauhan R, Chauhan V, Sonkar P, Dhaked RK. Identification of Inhibitors against Botulinum Neurotoxins: 8-Hydroxyquinolines Hold Promise. Mini Rev Med Chem 2019; 19:1694-1706. [PMID: 31490749 DOI: 10.2174/1389557519666190906120228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic category A biological warfare agents. There is no therapeutics available for BoNT intoxication yet, necessitating the development of a medical countermeasure against these neurotoxins. The discovery of small molecule-based drugs has revolutionized in the last two decades resulting in the identification of several small molecule inhibitors of BoNTs. However, none progressed to clinical trials. 8-Hydroxyquinolines scaffold-based molecules are important 'privileged structures' that can be exploited as inhibitors of a diverse range of targets. In this review, our study of recent reports suggests the development of 8-hydroxyquinoline derived molecules as a potential drug may be on the horizon.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| |
Collapse
|
31
|
Emanuel A, Qiu H, Barker D, Takla T, Gillum K, Neimuth N, Kodihalli S. Efficacy of equine botulism antitoxin in botulism poisoning in a guinea pig model. PLoS One 2019; 14:e0209019. [PMID: 30633746 PMCID: PMC6329499 DOI: 10.1371/journal.pone.0209019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background Botulism is a disease caused by neurogenic toxins that block acetylcholine release, resulting in potentially life threatening neuroparalysis. Seven distinct serotypes of botulinum neurotoxins (BoNTs) have been described and are found in nature world-wide. This, combined with ease of production, make BoNTs a significant bioweapon threat. An essential countermeasure to this threat is an antitoxin to remove circulating toxin. An antitoxin, tradename BAT (Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)–(Equine)), has been developed and its efficacy evaluated against all seven serotypes in guinea pigs. Methods and findings Studies were conducted to establish the lethal dose and clinical course of intoxication for all seven toxins, and post-exposure prophylactic efficacy of BAT product. Animals were monitored for signs of intoxication and mortality for 14 days. Guinea pig intramuscular LD50s (GPIMLD50) for all BoNTs ranged from 2.0 (serotype C) to 73.2 (serotype E) of mouse intraperitoneal LD50 units. A dose of 4x GPIMLD50 was identified as the appropriate toxin dose for use in subsequent efficacy and post-exposure prophylaxis studies. The main clinical signs observed included hind limb paralysis, weak limb, change in breathing rate/pattern, and forced abdominal respiration. Mean time to onset of clinical signs ranged from 12 hours (serotype E) to 39 hours (serotype G). Twelve hours post-intoxication was selected as the appropriate time point for intervention for all serotypes apart from E where 6 hours was selected because of the rapid onset and progression of clinical signs. Post-exposure treatment with BAT product resulted in a significantly (p<0.0001) higher survival at >0.008 scaled human dose for serotypes A, B, C, F and G, at >0.2x for serotype D and >0.04x for serotype E. Conclusions These studies confirm the efficacy of BAT as a post-exposure prophylactic therapy against all seven known BoNT serotypes.
Collapse
Affiliation(s)
- Andrew Emanuel
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Hongyu Qiu
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Teresa Takla
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Karen Gillum
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Nancy Neimuth
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
32
|
Lam KH, Sikorra S, Weisemann J, Maatsch H, Perry K, Rummel A, Binz T, Jin R. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA. Pathog Dis 2018; 76:4982781. [PMID: 29688327 DOI: 10.1093/femspd/fty044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2 recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Hannah Maatsch
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| |
Collapse
|
33
|
Tehran DA, Pirazzini M. Preparation of Cerebellum Granule Neurons from Mouse or Rat Pups and Evaluation of Clostridial Neurotoxin Activity and Their Inhibitors by Western Blot and Immunohistochemistry. Bio Protoc 2018; 8:e2918. [PMID: 34395747 DOI: 10.21769/bioprotoc.2918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 01/29/2023] Open
Abstract
Cerebellar Granule Neurons (CGN) from post-natal rodents have been widely used as a model to study neuronal development, physiology and pathology. CGN cultured in vitro maintain the same features displayed in vivo by mature cerebellar granule cells, including the development of a dense neuritic network, neuronal activity, neurotransmitter release and the expression of neuronal protein markers. Moreover, CGN represent a convenient model for the study of Clostridial Neurotoxins (CNT), most notably known as Tetanus and Botulinum neurotoxins, as they abundantly express both CNT receptors and intraneuronal substrates, i.e., Soluble N-ethylmaleimide-sensitive factor activating protein receptors (SNARE proteins). Here, we describe a protocol for obtaining a highly pure culture of CGN from postnatal rats/mice and an easy procedure for their intoxication with CNT. We also illustrate handy methods to evaluate CNT activity and their inhibition.
Collapse
Affiliation(s)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Rashid EAMA, El-Mahdy NM, Kharoub HS, Gouda AS, ElNabarawy NA, Mégarbane B. Iatrogenic Botulism Outbreak in Egypt due to a Counterfeit Botulinum Toxin A Preparation - A Descriptive Series of Patient Features and Outcome. Basic Clin Pharmacol Toxicol 2018; 123:622-627. [DOI: 10.1111/bcpt.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Nashwa Mohamed El-Mahdy
- National Egypt Center of Environmental and Toxicological Research (NECTR); Faculty of Medicine; Cairo University; Cairo Egypt
| | - Huda Shehata Kharoub
- National Egypt Center of Environmental and Toxicological Research (NECTR); Faculty of Medicine; Cairo University; Cairo Egypt
| | - Ahmed Salah Gouda
- National Egypt Center of Environmental and Toxicological Research (NECTR); Faculty of Medicine; Cairo University; Cairo Egypt
| | - Naglaa Ahmed ElNabarawy
- National Egypt Center of Environmental and Toxicological Research (NECTR); Faculty of Medicine; Cairo University; Cairo Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care; Lariboisière Hospital; INSERM UMRS-1144; Paris-Diderot University; Paris France
| |
Collapse
|
35
|
Squaiella-Baptistão CC, Magnoli FC, Marcelino JR, Sant'Anna OA, Tambourgi DV. Quality of horse F(ab') 2 antitoxins and anti-rabies immunoglobulins: protein content and anticomplementary activity. J Venom Anim Toxins Incl Trop Dis 2018; 24:16. [PMID: 29946337 PMCID: PMC6006770 DOI: 10.1186/s40409-018-0153-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background Among other applications, immunotherapy is used for the post-exposure treatment and/or prophylaxis of important infectious diseases, such as botulism, diphtheria, tetanus and rabies. The effectiveness of serum therapy is widely proven, but improvements on the immunoglobulin purification process and on the quality control are necessary to reduce the amount of protein aggregates. These may trigger adverse reactions in patients by activating the complement system and inducing the generation of anaphylatoxins. Herein, we used immunochemical methods to predict the quality of horse F(ab’)2 anti-botulinum AB, anti-diphtheric, antitetanic and anti-rabies immunoglobulins, in terms of amount of proteins and protein aggregates. Methods Samples were submitted to protein quantification, SDS-PAGE, Western blot analysis and molecular exclusion chromatography. The anticomplementary activity was determined in vitro by detecting the production of C5a/C5a desArg, the most potent anaphylatoxin. Data were analyzed by one-way ANOVA followed by Tukey’s post-test, and differences were considered statistically significant when p < 0.05. Results Horse F(ab’)2 antitoxins and anti-rabies immunoglobulin preparations presented different amounts of protein. SDS-PAGE and Western blot analyses revealed the presence of protein aggregates, non-immunoglobulin contaminants and, unexpectedly, IgG whole molecules in the samples, indicating the non-complete digestion of immunoglobulins. The chromatographic profiles of antitoxins and anti-rabies immunoglobulins allowed to estimate the percentage of contaminants and aggregates in the samples. Although protein aggregates were present, the samples were not able to induce the generation of C5a/C5a desArg in vitro, indicating that they probably contain acceptable levels of aggregates. Conclusions Anti-botulinum AB (bivalent), anti-diphtheric, antitetanic and anti-rabies horse F(ab’)2 immunoglobulins probably contain acceptable levels of aggregates, although other improvements on the preparations must be carried out. Protein profile analysis and in vitro anticomplementary activity of F(ab’)2 immunoglobulin preparations should be included as quality control steps, to ensure acceptable levels of aggregates, contaminants and whole IgG molecules on final products, reducing the chances of adverse reactions in patients.
Collapse
Affiliation(s)
| | - Fábio Carlos Magnoli
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - José Roberto Marcelino
- 2Seção de Processamento de Plasmas Hiperimunes, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Osvaldo Augusto Sant'Anna
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Denise V Tambourgi
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
36
|
Tehran DA, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:toxins10050190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
37
|
Konstantinović J, Kiris E, Kota KP, Kugelman-Tonos J, Videnović M, Cazares LH, Terzić Jovanović N, Verbić TŽ, Andjelković B, Duplantier AJ, Bavari S, Šolaja BA. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. J Med Chem 2018; 61:1595-1608. [PMID: 29385334 DOI: 10.1021/acs.jmedchem.7b01710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Krishna P Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Johanny Kugelman-Tonos
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Milica Videnović
- Faculty of Chemistry Innovative Centre , Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Nataša Terzić Jovanović
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade , Njegoševa 12, 11000 Belgrade, Serbia
| | - Tatjana Ž Verbić
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Boban Andjelković
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Allen J Duplantier
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia.,Serbian Academy of Sciences and Arts , Knez Mihailova 35, 11158 Belgrade, Serbia
| |
Collapse
|
38
|
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2017; 147:32-37. [PMID: 29111118 DOI: 10.1016/j.toxicon.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Botulinum (BoNTs) and tetanus (TeNT) neurotoxins are the most toxic substances known and form the growing family of Clostridial neurotoxins (CNT), the etiologic agents of botulism and tetanus. CNT are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol, where its substrates, the three SNARE proteins, are localized. L translocation is accompanied by unfolding and, once delivered on the cytosolic side of the endosome membrane, it has to be reduced and reacquire the native fold to be active. The Thioredoxin-Thioredoxin Reductase system (Trx-TrxR) specifically reduces the interchain disulfide bond while the cytosolic chaperone protein Hsp90 mediates L refolding. Both steps are essential for CNT activity and their inhibition efficiently blocks the neurotoxicity in cultured neurons and mice. Trx and its reductase physically interact with Hsp90 and are loosely bound to the cytosolic side of synaptic vesicles, the organelle exploited by CNT to enter nerve terminals and wherefrom L is translocated into the cytosol. Therefore, Trx, TrxR and Hsp90 orchestrate a chaperone-redox molecular machinery that enables the catalytic activity of the L inside nerve terminals. Given the fundamental role of L reduction and refolding, this machinery represents a rational target for the development of mechanism-based antitoxins.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy.
| | - Domenico Azarnia Tehran
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Giulia Zanetti
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy; Istituto CNR di Neuroscienze, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
39
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
40
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|