1
|
Bauman AA, Sarathy JP, Kaya F, Massoudi LM, Scherman MS, Hastings C, Liu J, Xie M, Brooks EJ, Ramey ME, Jones IL, Benedict ND, Maclaughlin MR, Miller-Dawson JA, Waidyarachchi SL, Butler MM, Bowlin TL, Zimmerman MD, Lenaerts AJ, Meibohm B, Gonzalez-Juarrero M, Lyons MA, Dartois V, Lee RE, Robertson GT. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0071624. [PMID: 39345140 PMCID: PMC11539231 DOI: 10.1128/aac.00716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Collapse
Affiliation(s)
- Allison A. Bauman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jansy P. Sarathy
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Firat Kaya
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Lisa M. Massoudi
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michael S. Scherman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Courtney Hastings
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jiuyu Liu
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Min Xie
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Elizabeth J. Brooks
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Isabelle L. Jones
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Noalani D. Benedict
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Madelyn R. Maclaughlin
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jake A. Miller-Dawson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | - Matthew D. Zimmerman
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Anne J. Lenaerts
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | | | - Michael A. Lyons
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Veronique Dartois
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gregory T. Robertson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Ren N, Liu X, Luo Y, Li G, Huang Y, Ji D, Peng C, Sun J, Li H. Developing a framework for identifying risk factors and estimating direct economic disease burden attributable to healthcare-associated infections: a case study of a Chinese Tuberculosis hospital. Glob Health Res Policy 2024; 9:33. [PMID: 39252124 PMCID: PMC11382460 DOI: 10.1186/s41256-024-00375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024] Open
Abstract
Healthcare-associated infections (HAIs) represent a major global health burden, which necessitate effective frameworks to identify potential risk factors and estimate the corresponding direct economic disease burden. In this article, we proposed a framework designed to address these needs through a case study conducted in a Tuberculosis (TB) hospital in Hubei Province, China, using data from 2018 to 2019. A comprehensive multistep procedure was developed, including ethical application, participant inclusion, risk factor identification, and direct economic disease burden estimation. In the case study, ethical approval was obtained, and patient data were anonymized to ensure privacy. All TB hospitalized patients over the study period were included and classified into groups with and without HAIs after screening the inclusion and exclusion criteria. Key risk factors, including gender, age, and invasive procedure were identified through univariate and multivariate analyses. Then, propensity score matching was employed to select the balanced groups with similar characteristics. Comparisons of medical expenditures (total medical expenditure, medicine expenditure, and antibiotics expenditure) and hospitalization days between the balanced groups were calculated as the additional direct economic disease burden measures caused by HAIs. This framework can serve as a tool for not only hospital management and policy-making, but also implementation of targeted infection prevention and control measures. Moreover, it has the potential to be applied in various healthcare settings at local, regional, national, and international levels to identify high-risk areas, optimize resource allocation, and improve hospital management and governance, as well as inter-organizational learning. Challenges to implement the framework are also raised, such as data quality, regulatory compliance, considerations on unique nature of communicable diseases and other diseases, and training need for professionals.
Collapse
Affiliation(s)
- Nili Ren
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Xinliang Liu
- School of Public Health/Global Health Institute, Wuhan University, No. 115 Donghu Road, Wuhan, 430071, China
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Luo
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Guofei Li
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Ying Huang
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Desheng Ji
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Cheng Peng
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, No28 Baofengyilu Road, Wuhan, 430030, China
| | - Jing Sun
- School of Health Policy and Management, Dongcheng District, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, 100730, China.
| | - Hao Li
- School of Public Health/Global Health Institute, Wuhan University, No. 115 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
3
|
Jin C, Wu Y, Chen J, Liu J, Zhang H, Qian Q, Pang T. Prevalence and patterns of drug-resistant Mycobacterium tuberculosis in newly diagnosed patients in China: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 38:292-301. [PMID: 38825149 DOI: 10.1016/j.jgar.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), one of the deadliest infectious diseases globally, is increasingly exacerbated in China by the emergence of resistant Mycobacterium tuberculosis (MTB) strains. Drug-resistant TB, including mono-drug-resistant TB, multidrug-resistant TB (MDR-TB), and extensively drug-resistant TB (XDR-TB), presents significant public health challenges. METHODS We conducted a systematic literature review from January 2010 to February 2024 using databases such as PubMed, Embase, Web of Science, and Google Scholar. Our focus was on empirical data related to drug resistance patterns in newly diagnosed TB cases. Non-empirical studies were excluded through meticulous filtering. For the meta-analysis, we used Review Manager (RevMan) 5.2 and assessed evidence quality using the Newcastle-Ottawa Scale (NOS). RESULTS Our search strategy identified 40 studies that met the inclusion criteria, encompassing a total sample size of 87,667 participants. Among new TB cases, the estimated prevalence of MDR-TB in China was 6.9% (95% CI: 5.6-8.1%). Prevalence rates for mono-drug resistance to first-line anti-TB medications were as follows: isoniazid at 18.2% (95% CI: 16.4-20.6%), rifampicin at 10.5% (95% CI: 8.6-12.8%), and ethambutol at 5.7% (95% CI: 4.1-7.3%). The prevalence of streptomycin resistance, a former first-line anti-TB drug, was 17.1% (95% CI: 14.6-19.1%). The prevalence of other types of mono-drug resistance was 15.2% (95% CI: 13.9-17.3%), and for XDR-TB, it was 0.9% (95% CI: 0.6-1.4%). CONCLUSIONS The high prevalence of drug-resistant TB in China poses a significant public health challenge. There is an urgent need for targeted interventions and continued surveillance to combat the spread of drug-resistant TB.
Collapse
Affiliation(s)
- Cong Jin
- School of Public Health, North China University of Science and Technology, Tangshan City, Hebei Province, China
| | - Yuting Wu
- School of Public Health, North China University of Science and Technology, Tangshan City, Hebei Province, China
| | - Jiangpo Chen
- Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang City, Heibei Province, China
| | - Jing Liu
- Department of Pharmacy, Guangyang Maternal and Child Care Health Hospital, Langfang City, Hebei Province, China
| | - Hongwei Zhang
- General Practice Department, The Fourth People's Hospital of Langfang, Langfang City, Hebei Province, China
| | - Qingzeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan City, Hebei Province, China; Hebei Coordinated Innovation Center of Occupational Health and Safety, Tangshan City, Hebei Province, China.
| | - Tieliang Pang
- Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang City, Heibei Province, China
| |
Collapse
|
4
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024:S0300-9084(24)00142-1. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
5
|
Seidel RW, Goddard R, Lang M, Richter A. Nα-Aroyl-N-Aryl-Phenylalanine Amides: A Promising Class of Antimycobacterial Agents Targeting the RNA Polymerase. Chem Biodivers 2024; 21:e202400267. [PMID: 38588490 DOI: 10.1002/cbdv.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
6
|
Morales-Durán N, León-Buitimea A, Morones-Ramírez JR. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024; 10:e27984. [PMID: 38510041 PMCID: PMC10950705 DOI: 10.1016/j.heliyon.2024.e27984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.
Collapse
Affiliation(s)
- Nami Morales-Durán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - José R. Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| |
Collapse
|
7
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Negi A, Sharma R. The significance of persisters in tuberculosis drug discovery: Exploring the potential of targeting the glyoxylate shunt pathway. Eur J Med Chem 2024; 265:116058. [PMID: 38128237 DOI: 10.1016/j.ejmech.2023.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Biala G, Kedzierska E, Kruk-Slomka M, Orzelska-Gorka J, Hmaidan S, Skrok A, Kaminski J, Havrankova E, Nadaska D, Malik I. Research in the Field of Drug Design and Development. Pharmaceuticals (Basel) 2023; 16:1283. [PMID: 37765091 PMCID: PMC10536713 DOI: 10.3390/ph16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The processes used by academic and industrial scientists to discover new drugs have recently experienced a true renaissance, with many new and exciting techniques being developed over the past 5-10 years alone. Drug design and discovery, and the search for new safe and well-tolerated compounds, as well as the ineffectiveness of existing therapies, and society's insufficient knowledge concerning the prophylactics and pharmacotherapy of the most common diseases today, comprise a serious challenge. This can influence not only the quality of human life, but also the health of whole societies, which became evident during the COVID-19 pandemic. In general, the process of drug development consists of three main stages: drug discovery, preclinical development using cell-based and animal models/tests, clinical trials on humans and, finally, forward moving toward the step of obtaining regulatory approval, in order to market the potential drug. In this review, we will attempt to outline the first three most important consecutive phases in drug design and development, based on the experience of three cooperating and complementary academic centers of the Visegrád group; i.e., Medical University of Lublin, Poland, Masaryk University of Brno, Czech Republic, and Comenius University Bratislava, Slovak Republic.
Collapse
Affiliation(s)
- Grazyna Biala
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Ewa Kedzierska
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Marta Kruk-Slomka
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Jolanta Orzelska-Gorka
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Sara Hmaidan
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Aleksandra Skrok
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Jakub Kaminski
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Eva Havrankova
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University of Brno, 601 77 Brno, Czech Republic;
| | - Dominika Nadaska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia (I.M.)
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia (I.M.)
| |
Collapse
|
10
|
Warner DF, Wood R. New tricks for an old dog: opportunities for better tuberculosis control. J Int AIDS Soc 2023; 26:e26081. [PMID: 36951496 PMCID: PMC10035324 DOI: 10.1002/jia2.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Affiliation(s)
- Digby F. Warner
- Molecular Mycobacteriology Research Unit & DSI/NRF Centre of Excellence for Biomedical TB ResearchDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Desmond Tutu Health FoundationFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|