1
|
Salgado RM, Ryan BJ, Seeley AD, Charkoudian N. Improving Endurance Exercise Performance at High Altitude: Traditional and Nontraditional Approaches. Exerc Sport Sci Rev 2025; 53:10-22. [PMID: 39262050 DOI: 10.1249/jes.0000000000000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Acute exposure to terrestrial altitude (hypobaric hypoxia) causes decrements in endurance performance relative to sea level. Altitude acclimatization consistently results in partial attenuation of these decrements, but due to logistical challenges, it is not readily implemented. We discuss mechanisms and impact (or lack thereof) of other non-acclimatization interventions to improve endurance performance and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Roy M Salgado
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA
| | | | | | | |
Collapse
|
2
|
Yang Y, Feng Z, Luo YH, Chen JM, Zhang Y, Liao YJ, Jiang H, Long Y, Wei B. Exercise-Induced Central Fatigue: Biomarkers, and Non-Medicinal Interventions. Aging Dis 2024:AD.2024.0567. [PMID: 39012671 DOI: 10.14336/ad.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Fatigue, commonly experienced in daily life, is a feeling of extreme tiredness, shortage or lack of energy, exhaustion, and difficulty in performing voluntary tasks. Central fatigue, defined as a progressive failure to voluntarily activate the muscle, is typically linked to moderate- or light-intensity exercise. However, in some instances, high-intensity exercise can also trigger the onset of central fatigue. Exercise-induced central fatigue often precedes the decline in physical performance in well-trained athletes. This leads to a reduction in nerve impulses, decreased neuronal excitability, and an imbalance in brain homeostasis, all of which can adversely impact an athlete's performance and the longevity of their sports career. Therefore, implementing strategies to delay the onset of exercise-induced central fatigue is vital for enhancing athletic performance and safeguarding athletes from the debilitating effects of fatigue. In this review, we discuss the structural basis, measurement methods, and biomarkers of exercise-induced central fatigue. Furthermore, we propose non-pharmacological interventions to mitigate its effects, which can potentially foster improvements in athletes' performances in a healthful and sustainable manner.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu-Hang Luo
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jue-Miao Chen
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi-Jun Liao
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Hui Jiang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yinxi Long
- Department of Neurology, Affiliated Hengyang Hospital of Hunan Normal University &;amp Hengyang Central Hospital, Hengyang, 421001, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|