1
|
Xiao K, Li H, Li Y, Zhan B, Fang X, Zhao B, Zhang X, Wu Y, Wang F, Jia Y. Protective effects and mechanism of Sangyu granule on acetaminophen-induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118282. [PMID: 38701935 DOI: 10.1016/j.jep.2024.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Sang Yu granule (SY), a traditional Chinese medicine prescription of Xijing Hospital, was developed based on the Guanyin powder in the classical prescription "Hong's Collection of Proven Prescriptions" and the new theory of modern Chinese medicine. It has been proved to have a certain therapeutic effect on drug-induced liver injury (DILI), but the specific mechanism of action is still unclear. AIM OF STUDY Aim of the study was to explore the effect of SangYu granule on treating drug-induced liver injury induced by acetaminophen in mice. MATERIALS AND METHODS The chemical composition of SY, serum, and liver tissue was analyzed using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To assess hepatic function, measurements were taken using kits for total bile acids, as well as serum AST, ALT, and ALP activity. Concentrations of IL-1β and TNF-α in serum were quantified using ELISA kits. Transcriptome Sequencing Analysis and 2bRAD-M microbial diversity analysis were employed to evaluate gene expression variance in liver tissue and fecal microbiota diversity among different groups, respectively. Western blotting was performed to observe differences in the activation levels of FXR, SHP, CYP7A1 and PPARα in the liver, and the levels of FXR and FGF-15 genes and proteins in the ileum of mice. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to investigate the potential therapeutic effect of administering the intestinal microbial suspension from mice treated with SY on drug-induced liver injury. RESULTS SY treatment exhibited significant hepatoprotective effects in mice, effectively ameliorating drug-induced liver injury while concurrently restoring intestinal microbial dysbiosis. Furthermore, SY administration demonstrated a reduction in the concentration of total bile acids, the expression of FXR and SHP proteins in the liver was up-regulated, CYP7A1 protein was down-regulated, and the expressions of FXR and FGF-15 proteins in the ileum were up-regulated. However, no notable impact on PPARα was observed. Furthermore, results from FMT experiments indicated that the administration of fecal suspensions derived from mice treated with SY did not yield any therapeutic benefits in the context of drug-induced liver injury. CONCLUSION The aforementioned findings strongly suggest that SY exerts a pronounced ameliorative effect on drug-induced liver injury through its ability to modulate the expression of key proteins involved in bile acid secretion, thereby preserving hepato-enteric circulation homeostasis.
Collapse
Affiliation(s)
- Kexin Xiao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Hongyu Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Yuening Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of life sciences, Northwestern University, Xi'an, 710069, China
| | - Bo Zhan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Xiaohua Fang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Bingjie Zhao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China
| | - Xiaofei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| | - Yumei Wu
- Department of Pharmacology, Air Force Medical University, Xi'an, 710032, China.
| | - Fan Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, China.
| |
Collapse
|
2
|
Zeng Q, Yuwen Z, Zhang L, Li Y, Liu H, Zhang K. Molecular Engineering of a Doubly Quenched Fluorescent Probe Enables Ultrasensitive Detection of Biothiols in Highly Diluted Plasma and High-Fidelity Imaging of Dihydroartemisinin-Induced Ferroptosis. Anal Chem 2024; 96:13260-13269. [PMID: 39087711 DOI: 10.1021/acs.analchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The occurrence and development of diseases are accompanied by abnormal activity or concentration of biomarkers in cells, tissues, and blood. However, the insufficient sensitivity and accuracy of the available fluorescence probes hinder the precise monitoring of associated indexes in biological systems, which is generally due to the high probe intrinsic fluorescence and false-negative signal caused by the reactive oxygen species (ROS)-induced probe decomposition. To resolve these problems, we have engineered a ROS-stable, meso-carboxylate boron dipyrromethene (BODIPY)-based fluorescent probe, which displays quite a low background fluorescence due to the doubly quenched intrinsic fluorescence by a combined strategy of the photoinduced electron transfer (PET) effect and "ester-to-carboxylate" conversion. The probe achieved a high S/N ratio with ultrasensitivity and good selectivity toward biothiols, endowing its fast detection capability toward the biothiol level in 200×-diluted plasma samples. Using this probe, we achieved remarkable distinguishing of liver injury plasma from normal plasma even at 80× dilution. Moreover, owing to its good stability toward ROS, the probe was successfully employed for high-fidelity imaging of the negative fluctuation of the biothiol level in nonsmall-cell lung cancer (NSCLC) during dihydroartemisinin-induced ferroptosis. This delicate design of suppressing intrinsic fluorescence reveals insights into enhancing the sensitivity and accuracy of fluorescent probes toward the detection and imaging of biomarkers in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lemeng Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Yuning Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
3
|
Zhang L, Chen J, Cao Z, Zhang M, Ma R, Zhang P, Yao G, Li X. Patient versus physician preferences for lipid-lowering drug therapy: A discrete choice experiment. Health Expect 2024; 27:e14043. [PMID: 38590082 PMCID: PMC11002318 DOI: 10.1111/hex.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The emergence of proprotein convertase subtilisin/kexin type 9 inhibitors offered dyslipidemia patients an alternative to statins for lipid-lowering treatment. Understanding patient and physician preferences for lipid-lowering drugs may promote shared decision-making and improve treatment outcomes. METHODS This study utilized an online discrete choice experiment (DCE) to assess the relative importance (RI) of six attributes related to lipid-lowering drugs, including frequency of administration, mode of administration, reduction of low-density lipoprotein cholesterol (LDL-C) level, risk of myopathy, risk of liver damage, and out-of-pocket monthly cost. Respondents were recruited from dyslipidemia patients and cardiovascular physicians in China. A mixed logit model and latent class analysis were employed to estimate the preference coefficient, marginal willingness to pay (mWTP), and RI of attributes. Ethical approval has been obtained for this study. RESULTS A total of 708 patients and 507 physicians participated in the survey. Patients prioritized the 'risk of liver damage' (RI = 23.6%) with 'mode of administration' (RI = 19.2%) and 'frequency of administration' (RI = 18.8%) following closely. Contrarily, physicians prioritized the 'reduction of LDL-C level' (RI = 33.5%), followed by 'risk of liver damage' (RI = 26.0%) and 'risk of myopathy' (RI = 16.1%). Patients placed a higher value on 'frequency of administration' (p < .001) and 'mode of administration' (p < .001) compared to physicians, while physicians valued 'reduction of LDL-C level' (p < .001) and 'risk of myopathy' (p = .012) more than patients. Physicians exhibited higher mWTP than patients for all attributes except frequency and mode of administration. The LCA revealed three distinct patient classes: focus on oral administration, focus on hepatic safety and frequency and focus on hepatic safety and cost. Likewise, three physician classes were identified: frequency-insensitive, efficacy-focused and safety-focused. CONCLUSIONS The preferences for lipid-lowering drug therapy differed between patients and physicians in China. Physicians should take into account patients' preferences and provide personalized treatment when they formulate lipid-lowering treatment plans. PATIENT OR PUBLIC CONTRIBUTION Patients participated in the questionnaire design process. They engaged in a focus group discussion to determine attributes and levels and also participated in a pilot survey to assess the comprehensibility of the questionnaires. Additionally, patients were involved in the DCE survey to express their preferences. The findings of patient preference for lipid-lowering drug therapy will promote shared decision-making and optimize the treatment regimen.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Jiali Chen
- Department of Health Policy, School of Health Policy and ManagementNanjing Medical UniversityNanjingChina
| | - Zhaoliu Cao
- Department of PharmacyNanjing City Qixia District HospitalNanjingChina
| | - Mengdie Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Rui Ma
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Pei Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Guiqing Yao
- Department of Cardiovascular Sciences and Leicester Clinical Trial Unit, College of Life SciencesUniversity of LeicesterLeicesterUK
| | - Xin Li
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of Health Policy, School of Health Policy and ManagementNanjing Medical UniversityNanjingChina
- Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease. Front Pharmacol 2021; 12:784591. [PMID: 34887768 PMCID: PMC8650224 DOI: 10.3389/fphar.2021.784591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic liver disease (CLD) represents a global health problem, accounting for the heavy burden of disability and increased health care utilization. Epigenome alterations play an important role in the occurrence and progression of CLD. Histone modifications, which include acetylation, methylation, and phosphorylation, represent an essential part of epigenetic modifications that affect the transcriptional activity of genes. Different from genetic mutations, histone modifications are plastic and reversible. They can be modulated pharmacologically without changing the DNA sequence. Thus, there might be chances to establish interventional solutions by targeting histone modifications to reverse CLD. Here we summarized the roles of histone modifications in the context of alcoholic liver disease (ALD), metabolic associated fatty liver disease (MAFLD), viral hepatitis, autoimmune liver disease, drug-induced liver injury (DILI), and liver fibrosis or cirrhosis. The potential targets of histone modifications for translation into therapeutics were also investigated. In prospect, high efficacy and low toxicity drugs that are selectively targeting histone modifications are required to completely reverse CLD and prevent the development of liver cirrhosis and malignancy.
Collapse
Affiliation(s)
- Qiuyu Cai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Manthorpe EM, Jerrett IV, Rawlin GT, Woolford L. Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins. Toxins (Basel) 2020; 12:E707. [PMID: 33171661 PMCID: PMC7695254 DOI: 10.3390/toxins12110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Plant- and fungus-derived hepatotoxins are a major cause of disease and production losses in ruminants in Australia and around the world. Many are well studied and described in the literature; however, this is not the case for a number of hepatotoxicities with economic and animal welfare impacts, such as acute bovine liver disease (ABLD), brassica-associated liver disease (BALD) and Trema tomentosa, Argentipallium blandowskianum and Lythrum hyssopifolia toxicity. Additionally, significant overlap in the clinical presentation and pathology of these conditions can present a diagnostic challenge for veterinarians. This review summarizes the current and most recently published knowledge of common plant- and fungus-associated hepatotoxins affecting cattle in Australia, with a focus on the mechanisms of toxicity and distinguishing diagnostic features. Consolidation of the current understanding of hepatotoxic mechanisms in cattle provides insight into the potential mechanisms of lesser-known toxins, including cellular and subcellular targets and potential metabolic pathways. In the absence of specific etiological investigations, the study of epidemiological, clinical and pathological features of hepatotoxicity provides valuable insights into potential toxic mechanisms and is integral for the successful diagnosis and management of these conditions.
Collapse
Affiliation(s)
- Eve M. Manthorpe
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia;
| | - Ian V. Jerrett
- Department of Jobs, Precincts and Regions, Agribio, the Centre for AgriBioscience, Melbourne, Victoria 3083, Australia; (I.V.J.); (G.T.R.)
| | - Grant T. Rawlin
- Department of Jobs, Precincts and Regions, Agribio, the Centre for AgriBioscience, Melbourne, Victoria 3083, Australia; (I.V.J.); (G.T.R.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia;
| |
Collapse
|
6
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
7
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
8
|
Ma X, Zhou Y, Qiao B, Jiang S, Shen Q, Han Y, Liu A, Chen X, Wei L, Zhou L, Zhao J. Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl 4-induced liver injury mouse model. Am J Physiol Endocrinol Metab 2020; 318:E817-E829. [PMID: 32182125 DOI: 10.1152/ajpendo.00427.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies have shown that there are differences between the sexes regarding to the occurrence and development of liver diseases, which may be associated with sex hormones. However, the mechanisms behind it are largely unknown. In this study, we first investigated the differences of liver injury between male and female mice, using the CCl4-induced liver injury mouse model. It showed that the liver damage of male mice was much more severe than that of female mice. Both the acute injury and fibrosis of the liver were reduced when androgens were depleted by castration of male mice. The vulnerability of male liver was associated with testis endocrine and excessive activation of inflammatory response in the liver. Castrated male mice with testosterone supplementation showed aggravated liver inflammatory response and fibrosis. The activity of NOD-like receptor protein 3 (NLRP3) inflammasome was increased when testosterone supplementation was provided. However, the enhanced inflammatory response and fibrosis due to testosterone supplementation were negated by inhibiting the activation of NLRP3 using the specific small molecule inhibitor MCC950. It suggests that testosterone is a key factor that influences liver injury by regulating the NLRP3 inflammasome activation-mediated inflammatory response.
Collapse
Affiliation(s)
- Xingyu Ma
- College of Animal Science, Southwest University, Chongqing, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Zhou
- College of Animal Science, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- Laboratory Animal Center in College of Animal Science, Southwest University, Chongqing, China
| | - Bingke Qiao
- College of Animal Science, Southwest University, Chongqing, China
| | - Songhong Jiang
- College of Animal Science, Southwest University, Chongqing, China
| | - Qian Shen
- Department of Microbiology, Ohio State University, Columbus, Ohio
| | - Yuzhu Han
- College of Animal Science, Southwest University, Chongqing, China
| | - Anfang Liu
- College of Animal Science, Southwest University, Chongqing, China
| | - Xuequn Chen
- College of Animal Science, Southwest University, Chongqing, China
| | - Leiting Wei
- College of Animal Science, Southwest University, Chongqing, China
| | - Le Zhou
- College of Animal Science, Southwest University, Chongqing, China
| | - Jianjun Zhao
- College of Animal Science, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- Laboratory Animal Center in College of Animal Science, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Metabolic Comorbidities and Risk of Development and Severity of Drug-Induced Liver Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8764093. [PMID: 31531370 PMCID: PMC6720367 DOI: 10.1155/2019/8764093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
The incidence and rates of diagnosis of drug-induced liver injury (DILI) have been increasing in recent years as findings from basic research and the examination of clinical databases reveal information about the clinical course, etiology, and prognosis of this complex disease. The prevalence of metabolic comorbidities (e.g., diabetes mellitus, fatty liver, obesity, and metabolic syndrome (MetS)) has been increasing during the same period. The results of preclinical and clinical research studies indicate that characteristics of metabolic comorbidities are also factors that affect DILI phenotype and progression. The objective of this review is to present the evidence for DILI and hepatotoxicity mechanisms, incidence, and outcomes in patients with MetS and nonalcoholic fatty liver disease. Moreover, we also summarize the relationships between drugs used to treat metabolic comorbidities and DILI.
Collapse
|
10
|
Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol 2019; 93:1021-1037. [DOI: 10.1007/s00204-019-02427-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
|
11
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Jing J, Teschke R. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury. J Clin Transl Hepatol 2018; 6:57-68. [PMID: 29577033 PMCID: PMC5863000 DOI: 10.14218/jcth.2017.00033] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.
Collapse
Affiliation(s)
- Jing Jing
- Medical School of Chinese PLA, Beijing, China
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, Frankfurt/Main, Germany
- *Correspondence to: Rolf Teschke, Department of Internal Medicine II, Klinikum Hanau, Teaching Hospital of the Goethe University of Frankfurt/Main, Leimenstrasse 20, Hanau D-63450, Germany. Tel: +49-6181-21859, Fax: +49-6181-2964211, E-mail:
| |
Collapse
|
13
|
A review of drug-induced liver injury databases. Arch Toxicol 2017; 91:3039-3049. [DOI: 10.1007/s00204-017-2024-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 01/23/2023]
|
14
|
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB. Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 2017; 18:ijms18040673. [PMID: 28333073 PMCID: PMC5412268 DOI: 10.3390/ijms18040673] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Abstract
Despite the central role of the liver in drug metabolism, surprisingly there is lack of certainty in anticipating the extent of modification of the clearance of a given drug in a given patient. The intent of this review is to provide a conceptual framework in considering the impact of liver disease on drug disposition and reciprocally the impact of drug disposition on liver disease. It is proposed that improved understanding of the situation is gained by considering the issue as a special example of a drug-gene-environment interaction. This requires an integration of knowledge of the drug's properties, knowledge of the gene products involved in its metabolism, and knowledge of the pathophysiology of its disposition. This will enhance the level of predictability of drug disposition and toxicity for a drug of interest in an individual patient. It is our contention that advances in pharmacology, pharmacogenomics, and hepatology, together with concerted interests in the academic, regulatory, and pharmaceutical industry communities provide an ideal immediate environment to move from a qualitative reactive approach to quantitative proactive approach in individualizing patient therapy in liver disease.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- a Department of Pharmacology and Toxicology , American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Robert A Branch
- b Department of Medicine, School of Medicine , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|