1
|
Vaes AW, De Boever P, Franssen FME, Uszko-Lencer NHMK, Vanfleteren LEGW, Spruit MA. Endothelial function in patients with COPD: an updated systematic review of studies using flow-mediated dilatation. Expert Rev Respir Med 2023; 17:53-69. [PMID: 36731860 DOI: 10.1080/17476348.2023.2176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Cardiovascular disease is a significant cause of morbidity and mortality in COPD. Endothelial dysfunction is suggested to be involved in cardiovascular disease pathogenesis, and multiple studies report endothelial dysfunction in COPD. This article summarized the current knowledge on endothelial function in COPD patients. AREAS COVERED Databases were screened until November 2022 for studies using ultrasound-based flow-mediated dilation in patients with stable COPD. Pooled effect sizes were calculated using random effects model. Meta-regression analyses assessed the effects of demographic and clinical variables. EXPERT OPINION 34 studies were identified (1365 COPD patients; 617 controls). Pooled analysis demonstrated an impaired endothelial-dependent (-2.33%; 95%CI -3.30/-1.35; p < 0.001) and endothelial-independent dilation (-3.11%; 95%CI -5.14/-1.08; p = 0.003) in COPD patients when compared to non-COPD controls. Meta-regression identified that higher age, worse severity of airflow obstruction, and current smoking were significantly associated with impaired endothelial function. Studies evaluating the effects of pharmacological and non-pharmacological interventions on endothelial function in COPD patients demonstrated conflicting results.
Collapse
Affiliation(s)
- Anouk W Vaes
- Department of Research and Development, Ciro, Horn, Netherlands
| | - Patrick De Boever
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Frits M E Franssen
- Department of Research and Development, Ciro, Horn, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Nicole H M K Uszko-Lencer
- Department of Research and Development, Ciro, Horn, Netherlands.,Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martijn A Spruit
- Department of Research and Development, Ciro, Horn, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
2
|
Li XF, Wan CQ, Mao YM. Analysis of pathogenesis and drug treatment of chronic obstructive pulmonary disease complicated with cardiovascular disease. Front Med (Lausanne) 2022; 9:979959. [PMID: 36405582 PMCID: PMC9672343 DOI: 10.3389/fmed.2022.979959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airflow limitation, and is associated with abnormal inflammatory responses in the lungs to cigarette smoke and toxic and harmful gases. Due to the existence of common risk factors, COPD is prone to multiple complications, among which cardiovascular disease (CVD) is the most common. It is currently established that cardiovascular comorbidities increase the risk of exacerbations and mortality from COPD. COPD is also an independent risk factor for CVD, and its specific mechanism is still unclear, which may be related to chronic systemic inflammation, oxidative stress, and vascular dysfunction. There is evidence that chronic inflammation of the airways can lead to destruction of the lung parenchyma and decreased lung function. Inflammatory cells in the airways also generate reactive oxygen species in the lungs, and reactive oxygen species further promote lung inflammation through signal transduction and other pathways. Inflammatory mediators circulate from the lungs to the whole body, causing intravascular dysfunction, promoting the formation and rupture of atherosclerotic plaques, and ultimately leading to the occurrence and development of CVD. This article reviews the pathophysiological mechanisms of COPD complicated by CVD and the effects of common cardiovascular drugs on COPD.
Collapse
Affiliation(s)
- Xiao-Fang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Cheng-Quan Wan
- Department of Neonatology, Luoyang Maternal and Child Health Hospital,, Luoyang, Henan, China
| | - Yi-Min Mao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
3
|
Flow-Mediated Dilatation in the Assessment of Coronary Heart Disease: A Meta-Analysis. Cardiol Res Pract 2022; 2022:7967324. [PMID: 36213460 PMCID: PMC9534706 DOI: 10.1155/2022/7967324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Endothelial dysfunction may contribute to the increased morbidity and mortality associated with coronary heart disease (CHD). Flow-mediated dilatation (FMD) is the most popular noninvasive method for vascular endothelial function evaluation. This meta-analysis aimed to investigate the association between FMD and CHD. We searched the publications listed in the PubMed, Web of Science, Scopus, and Embase databases. Stata 14 software was used to analyze the data. Standardized mean difference (SMD) was used to calculate FMD levels, and the effect sizes were expressed with a 95% confidence interval (CI). I2 statistics were used to evaluate statistical heterogeneity. In this meta-analysis, 9 studies enrolled a total number of 943 participants, including 534 (56.63%) patients with CHD and 409 controls (43.37%). We found that patients with CHD showed a significantly lower FMD than the controls (SMD −0.706%; 95% CI: −0.985, −0.427; P=0.001) with high heterogeneity. In addition, funnel plot analysis suggested asymmetry that could be evidence of publication bias. But sensitivity analyses show that there were no influential studies. This meta-analysis provides evidence that patients with CHD show a significantly lower FMD than controls and highlights the literature on FMD as a hallmark in CHD diseases.
Collapse
|
4
|
Hernandez L, Laucyte-Cibulskiene A, Ward LJ, Kautzky-Willer A, Herrero MT, Norris CM, Raparelli V, Pilote L, Stenvinkel P, Kublickiene K. Gender dimension in cardio-pulmonary continuum. Front Cardiovasc Med 2022; 9:916194. [PMID: 36003909 PMCID: PMC9393639 DOI: 10.3389/fcvm.2022.916194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cardio-pulmonary diseases, which were once regarded as a man's illness, have been one of the leading causes of morbidity and mortality for both men and women in many countries in recent years. Both gender and sex influence the functional and structural changes in the human body and therefore play an important role in disease clinical manifestation, treatment choice, and/or response to treatment and prognosis of health outcomes. The gender dimension integrates sex and gender analysis in health sciences and medical research, however, it is still relatively overlooked suggesting the need for empowerment in the medical research community. Latest advances in the field of cardiovascular research have provided supportive evidence that the application of biological variables of sex has led to the understanding that heart disease in females may have different pathophysiology compared to males, particularly in younger adults. It has also resulted in new diagnostic techniques and a better understanding of symptomatology, while gender analysis has informed more appropriate risk stratification and prevention strategies. The existing knowledge in the pulmonary field shows the higher prevalence of pulmonary disorders among females, however, the role of gender as a socio-cultural construct has yet to be explored for the implementation of targeted interventions. The purpose of this review is to introduce the concept of gender dimension and its importance for the cardiopulmonary continuum with a focus on shared pathophysiology and disease presentation in addition to interrelation with chronic kidney disease. The review presents basic knowledge of what gender dimension means, and the application of sex and gender aspects in cardiovascular medicine with a specific focus on early pulmonary development, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Early vascular aging and inflammation have been presented as a potential pathophysiological link, with further interactions between the cardiopulmonary continuum and chronic kidney disease. Finally, implications for potential future research have been provided to increase the impact of gender dimension on research excellence that would add value to everybody, foster toward precision medicine and ultimately improve human health.
Collapse
Affiliation(s)
- Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Agne Laucyte-Cibulskiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Nephrology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Liam J. Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maria-Trinidad Herrero
- Clinical and Experimental Neuroscience, Institutes for Aging Research and Bio-Health Research of Murcia, School of Medicine, University of Murcia, Murcia, Spain
| | - Colleen M. Norris
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
- Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
| | - Valeria Raparelli
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Louise Pilote
- Division of Clinical Epidemiology, Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
5
|
Autoimmune Rheumatic Diseases and Vascular Function: The Concept of Autoimmune Atherosclerosis. J Clin Med 2021; 10:jcm10194427. [PMID: 34640445 PMCID: PMC8509415 DOI: 10.3390/jcm10194427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Autoimmune rheumatic diseases (AIRDs) with unknown etiology are increasing in incidence and prevalence. Up to 5% of the population is affected. AIRDs include rheumatoid arthritis, system lupus erythematosus, systemic sclerosis, and Sjögren's syndrome. In patients with autoimmune diseases, the immune system attacks structures of its own body, leading to widespread tissue and organ damage, which, in turn, is associated with increased morbidity and mortality. One third of the mortality associated with autoimmune diseases is due to cardiovascular diseases. Atherosclerosis is considered the main underlying cause of cardiovascular diseases. Currently, because of finding macrophages and lymphocytes at the atheroma, atherosclerosis is considered a chronic immune-inflammatory disease. In active inflammation, the liberation of inflammatory mediators such as tumor necrotic factor alpha (TNFa), interleukine-6 (IL-6), IL-1 and other factors like T and B cells, play a major role in the atheroma formation. In addition, antioxidized, low-density lipoprotein (LDL) antibodies, antinuclear antibodies (ANA), and rheumatoid factor (RF) are higher in the atherosclerotic patients. Traditional risk factors like gender, age, hypercholesterolemia, smoking, diabetes mellitus, and hypertension, however, do not alone explain the risk of atherosclerosis present in autoimmune diseases. This review examines the role of chronic inflammation in the etiology-and progression-of atherosclerosis in autoimmune rheumatic diseases. In addition, discussed here in detail are the possible effects of autoimmune rheumatic diseases that can affect vascular function. We present here the current findings from studies that assessed vascular function changes using state-of-the-art techniques and innovative endothelial function biomarkers.
Collapse
|
6
|
A Pilot Study: Hypertension, Endothelial Dysfunction and Retinal Microvasculature in Rheumatic Autoimmune Diseases. J Clin Med 2021; 10:jcm10184067. [PMID: 34575178 PMCID: PMC8467719 DOI: 10.3390/jcm10184067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The etiology of autoimmune rheumatic diseases is unknown. Endothelial dysfunction and premature atherosclerosis are commonly seen in these patients. Atherosclerosis is considered one of the main causes of cardiovascular diseases. Hypertension is considered the most important traditional cardiovascular risk. This case-control study aimed to investigate the relationship between autoimmune diseases and cardiovascular risk. Methods: This study was carried out in patients with rheumatoid arthritis, RA (n = 10), primary Sjögren syndrome, PSS (n = 10), and healthy controls (n = 10). Mean blood pressure (MBP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse wave velocity (PWV, an indicator of arterial stiffness) were assessed via a Vicorder device. Asymmetric dimethylarginine (ADMA) was measured via ELISA. Retinal photos were taken via a CR-2 retinal camera, and retinal microvasculature analysis was carried out. T-tests were conducted to compare the disease and control groups. ANOVA and ANOVA—ANCOVA were also used for the correction of covariates. Results: A high prevalence of hypertension was seen in RA (80% of cases) and PSS (40% of cases) compared to controls (only 20% of cases). Significant changes were seen in MBP (RA 101 ± 11 mmHg; PSS 93 ± 10 mm Hg vs. controls 88 ± 7 mmHg, p = 0.010), SBP (148 ± 16 mmHg in RA vs. 135 ± 16 mmHg in PSS vs. 128 ± 11 mmHg in control group; p = 0.007), DBP (77 ± 8 mmHg in RA, 72 ± 8 mmHg in PSS vs. 67 ± 6 mmHg in control; p = 0.010 in RA compared to the controls). Patients with PSS showed no significant difference as compared to controls (MBP: p = 0.240, SBP: p = 0.340, DBP: p = 0.190). Increased plasma ADMA was seen in RA (0.45 ± 0.069 ng/mL) and PSS (0.43 ± 0.060 ng/mL) patients as compared to controls (0.38 ± 0.059 ng/mL). ADMA in RA vs. control was statistically significant (p = 0.022). However, no differences were seen in ADMA in PSS vs. controls. PWV and retinal microvasculature did not differ across the three groups. Conclusions: The prevalence of hypertension in our cohort was very high. Similarly, signs of endothelial dysfunction were seen in autoimmune rheumatic diseases. As hypertension and endothelial dysfunction are important contributing risk factors for cardiovascular diseases, the association of hypertension and endothelial dysfunction should be monitored closely in autoimmune diseases.
Collapse
|
7
|
Goswami N, Fredriksen PM, Lundin KEA, Agu C, Elias SO, Motaung KS, Brix B, Cvirn G, Sourij H, Stelzl E, Kessler HH, Saloň A, Nkeh-Chungag B. COVID-19 and its effects on endothelium in HIV-positive patients in sub-Saharan Africa: Cardiometabolic risk, thrombosis and vascular function (ENDOCOVID STUDY). BMC Infect Dis 2021; 21:719. [PMID: 34332551 PMCID: PMC8325201 DOI: 10.1186/s12879-021-06426-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND COVID-19 has affected almost every country in the world, especially in terms of health system capacity and economic burden. People from sub-Saharan Africa (SSA) often face interaction between human immunodeficiency virus (HIV) infection and non-communicable diseases such as cardiovascular disease. Role of HIV infection and anti-retroviral treatment (ART) in altered cardiovascular risk is questionable and there is still need to further carry out research in this field. However, thus far it is unclear, what impact the COVID-19 co-infection in people living with HIV (PLHIV), with or without therapy will have. The ENDOCOVID project aims to investigate whether and how HIV-infection in COVID-19 patients modulates the time course of the disease, alters cardiovascular risk, and changes vascular endothelial function and coagulation parameters/ thrombosis risk. METHODS A total of 1026 patients will be included into this study. Cardiovascular research PLHIV with (n = 114 in each of the three recruiting centers) - or without - ART (n = 114 in each of the three recruiting centers) with COVID-19 and HIV-negative with COVID-19 (n = 114 in each of the three recruiting centers) will be carried out via clinical and biochemical measurements for cardiovascular risk factors and biomarkers of cardiovascular disease (CVD). Vascular and endothelial function will be measured by brachial artery flow-mediated dilatation (FMD), carotid intima-media thickness (IMT) assessments, and retinal blood vessel analyses, along with vascular endothelial biomarkers and cogualation markers. The correlation between HIV-infection in COVID-19 PLHIV with or without ART and its role in enhancement of cardiovascular risk and endothelial dysfunction will be assessed at admission, weekly, at discharge and, 4 weeks post-discharge (if possible). IMPACT OF PROJECT The ENDOCOVID project aims to evaluate in the long-term the cardiovascular risk and vascular endothelial function in PLHIV thus revealing an important transitional cardiovascular phenotype in COVID-19. The study was registered under clinicaltrials.gov (NCT04709302).
Collapse
Affiliation(s)
- Nandu Goswami
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, A-8010, Graz, Austria.
- Divison of Health Sciences, Alma Mater Europea Maribor, Maribor, Slovenia.
- Department of Biological & Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University (WSU), Mthatha, South Africa.
| | - Per Morten Fredriksen
- School of Health Sciences, Kristiania University College, Prinsensgate 7-9, 0152, Oslo, Norway
| | - Knut E A Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo and Oslo University Hospital- Rikshospitalet, 0372, Oslo, Norway
| | - Chidozie Agu
- Management Sciences for Health, Global Fund RSSH Project, Abuja, Nigeria
| | - Simiat Olanike Elias
- Department of Physiology, Faculty of Basic Medical Sciences, University College of Medicine, Lagos, Nigeria
| | - Keolebogile Shirley Motaung
- Department of Technology Transfer & Innovation, Durban University of Technology, Tromso Annex, Steve Biko Campus, Durban, 4000, South Africa
| | - Bianca Brix
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, A-8010, Graz, Austria
| | - Gerhard Cvirn
- Physiological Chemistry Section, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Clinical Division for Endocrinology and Diabetology, Medical University Graz, Graz, Austria
| | - Evelyn Stelzl
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Harald H Kessler
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Adam Saloň
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, A-8010, Graz, Austria
| | - Benedicta Nkeh-Chungag
- Department of Biological & Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University (WSU), Mthatha, South Africa
| |
Collapse
|
8
|
Theodorakopoulou MP, Alexandrou ME, Bakaloudi DR, Pitsiou G, Stanopoulos I, Kontakiotis T, Boutou AK. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Res 2021; 7:00983-2020. [PMID: 34195258 PMCID: PMC8236757 DOI: 10.1183/23120541.00983-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background Cardiovascular disease is a major cause of morbidity and mortality in COPD. Endothelial dysfunction is suggested to be one of the pathogenetic mechanisms involved. This is a systematic review and meta-analysis of studies using any available functional method to examine differences in endothelial function between patients with COPD and individuals without COPD (controls). Methods Literature search involved PubMed and Scopus databases. Eligible studies included adult patients and evaluated endothelial damage via functional methods. The Newcastle–Ottawa scale was applied to evaluate the quality of retrieved studies. Subgroup analyses were performed to explore heterogeneity across the studies. Funnel plots were constructed to evaluate publication bias. Results Of the 21 reports initially identified, 19 studies with a total of 968 participants were included in the final meta-analysis. A significantly impaired response in endothelium-dependent (weighted mean between-group difference (WMD) −2.59, 95% CI −3.75 to −1.42) and -independent vasodilation (WMD −3.13, 95% CI −5.18 to −1.09) was observed in patients with COPD compared to controls. When pooling all studies together, regardless of the technique used for assessment of vascular reactivity, pronounced endothelial dysfunction was observed in COPD compared to controls (standardised mean difference (SMD) −1.19, 95% CI −1.69 to −0.68). Subgroup analysis showed that the difference was larger when patients with COPD were compared with nonsmoking controls (SMD −1.75, 95% CI −2.58 to −0.92). Sensitivity analyses confirmed the results. Conclusions Patients with COPD have significantly impaired endothelial function compared to controls without COPD. Future studies should delineate the importance of endothelial dysfunction towards development of cardiovascular disease in COPD. COPD is significantly associated with endothelial dysfunction of both conduit vessels and microvasculature. This association is further strengthened when patients with COPD are compared to nonsmoking controls.https://bit.ly/2NlWLFN
Collapse
Affiliation(s)
| | - Maria Eleni Alexandrou
- Dept of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Georgia Pitsiou
- Dept of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Stanopoulos
- Dept of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Kontakiotis
- Dept of Respiratory Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Dept of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
9
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Theodorakopoulou MP, Bakaloudi DR, Alexandrou ME, Papakosta D, Pataka A, Kioumis I, Boutou AK. Endothelial Dysfunction during Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD 2021; 18:246-253. [PMID: 33779450 DOI: 10.1080/15412555.2021.1900094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by high cardiovascular risk, which is further amplified during acute COPD exacerbations (AECOPD). Endothelial dysfunction has been previously suggested as one of the potential pathogenetic mechanisms. In order to study the effects of AECOPD on endothelial function assessed by available functional methods, we performed a literature search involving Pubmed and Scopus databases. Eligible studies were those that included adult patients with COPD and evaluated endothelial damage via semi-invasive or noninvasive functional methods, during AECOPD and after recovery or in stable condition. Newcastle-Ottawa Scale was applied to evaluate the quality of retrieved studies. Endothelial function was significantly impaired during AECOPD compared to recovery/stable condition (SMD: -0.87, 95%CI [-1.19, -0.55]). Patients during AECOPD presented a significantly worse response in endothelium-dependent (flow-mediated dilatation WMD: -2.59, 95%CI [-3.75, -1.42]) and independent vasodilation (nitroglycerine-mediated dilatation WMD: -3.13, 95%CI [-5.18, -1.09]) compared to recovery. Sensitivity analyses confirmed the above results. In conclusion, endothelium-dependent and independent vasodilation is worse during AECOPD compared to the stable condition. Endothelial dysfunction could play a role in the high cardiovascular risk during AECOPD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Papakosta
- Department of Respiratory Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Department of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- Department of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
11
|
Çiftel M, Yilmaz O. İnvestigation of endothelial dysfunction in children with acute rheumatic fever. Ann Pediatr Cardiol 2020; 13:199-204. [PMID: 32863654 PMCID: PMC7437618 DOI: 10.4103/apc.apc_201_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Acute rheumatic fever (ARF) is an important cause of valvular heart disease in children. Endothelial dysfunction plays an important role in the pathogenesis of valvular heart diseases. The role of endothelial dysfunction in valvular heart diseases due to ARF is not exactly known. In ARF, autoimmune injury, inflammation, oxidative stress, and impairment of nitric oxide in valvular endothelium may be the causes of endothelial dysfunction. The purpose of this study is to evaluate endothelial dysfunction and arterial stiffness in children with ARF. Materials and Methods: Thirty-six patients diagnosed with ARF (the mean age was 11.80 ± 2.82 years) and 36 volunteered individuals with similar age, sex, and body mass index were included in the study. The study groups were compared in terms of M-mode echocardiography parameters, carotid arterial strain (CAS), beta-stiffness index (βSI), and flow-mediated dilation (FMD). Results: In patients with ARF, there was a decrease in FMD% (10.36 ± 7.26 and 12.76 ± 4.59; P < 0.001) compared to the control group. In addition, CAS (0.16 ± 0.06 and 0.18 ± 0.08; P = 0.44) and βSI (3.65 ± 1.61 and 3.57 ± 2.38; P = 0.24) were similar in the patient and the control groups. Furthermore, no correlation was detected between decreased FMD value and mitral regurgitation (r = −0.07; P = 0.66), aortic regurgitation (r = −0.04; P = 0.78), CAS (r = −0.08; P = 0.61), and βSİ (r = −0.20; P = 0.22). Conclusion: In our study, a decrease in FMD value, which is a marker of endothelial dysfunction, was found in children with rheumatic carditis.
Collapse
Affiliation(s)
- Murat Çiftel
- Department of Pediatric Cardiology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Osman Yilmaz
- Department of Pediatric Cardiology, Etlik Training and Research Hospital, Etlik, Ankara, Turkey
| |
Collapse
|
12
|
Piccari L, Del Pozo R, Blanco I, García-Lucio J, Torralba Y, Tura-Ceide O, Moises J, Sitges M, Peinado VI, Barberà JA. Association Between Systemic and Pulmonary Vascular Dysfunction in COPD. Int J Chron Obstruct Pulmon Dis 2020; 15:2037-2047. [PMID: 32904646 PMCID: PMC7457710 DOI: 10.2147/copd.s257679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction In chronic obstructive pulmonary disease (COPD), endothelial dysfunction and stiffness of systemic arteries may contribute to increased cardiovascular risk. Pulmonary vascular disease (PVD) is frequent in COPD. The association between PVD and systemic vascular dysfunction has not been thoroughly evaluated in COPD. Methods A total of 108 subjects were allocated into four groups (non-smoking controls, smoking controls, COPD without PVD and COPD with PVD). In systemic arteries, endothelial dysfunction was assessed by flow-mediated dilation (FMD) and arterial stiffness by pulse wave analysis (PWA) and pulse wave velocity (PWV). PVD was defined by a mean pulmonary artery pressure (PAP) ≥25 mmHg at right heart catheterization or by a tricuspid regurgitation velocity >2.8 m/s at doppler echocardiography. Biomarkers of inflammation and endothelial damage were assessed in peripheral blood. Results FMD was lower in COPD patients, with or without PVD, compared to non-smoking controls; and in patients with COPD and PVD compared to smoking controls. PWV was higher in COPD with PVD patients compared to both non-smoking and smoking controls in a model adjusted by age and the Framingham score; PWV was also higher in patients with COPD and PVD compared to COPD without PVD patients in the non-adjusted analysis. FMD and PWV correlated significantly with forced expiratory volume in the first second (FEV1), diffusing capacity for carbon monoxide (DLCO) and systolic PAP. FMD and PWV were correlated in all subjects. Discussion We conclude that endothelial dysfunction of systemic arteries is common in COPD, irrespective if they have PVD or not. COPD patients with PVD show increased stiffness and greater impairment of endothelial function in systemic arteries. These findings suggest the association of vascular impairment in both pulmonary and systemic territories in a subset of COPD patients.
Collapse
Affiliation(s)
- Lucilla Piccari
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roberto Del Pozo
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Jessica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Jorge Moises
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Víctor Ivo Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
13
|
Merlo C, Bernardi E, Bellotti F, Pomidori L, Cogo A. Supervised exercise training improves endothelial function in COPD patients: a method to reduce cardiovascular risk? ERJ Open Res 2020; 6:00304-2019. [PMID: 32714965 PMCID: PMC7369457 DOI: 10.1183/23120541.00304-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with an increased risk of cardiovascular diseases, particularly coronary artery disease (CAD) [1]. Endothelial dysfunction is a marker of cardiovascular risk [2]; a validated and standardised method to assess endothelial function is flow-mediated dilation (FMD) [3]. Supervised exercise training is key to health improvement in chronic obstructive pulmonary disease patientshttps://bit.ly/2AdfKvb
Collapse
Affiliation(s)
- Carlotta Merlo
- Center for Exercise and Sport Science, University of Ferrara, Ferrara, Italy
| | - Eva Bernardi
- Center for Exercise and Sport Science, University of Ferrara, Ferrara, Italy
| | - Federico Bellotti
- Center for Exercise and Sport Science, University of Ferrara, Ferrara, Italy
| | - Luca Pomidori
- Center for Exercise and Sport Science, University of Ferrara, Ferrara, Italy
| | - Annalisa Cogo
- Center for Exercise and Sport Science, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Pavitt MJ, Tanner RJ, Lewis A, Buttery S, Mehta B, Jefford H, Curtis KJ, Banya WAS, Husain S, Satkunam K, Shrikrishna D, Man W, Polkey MI, Hopkinson NS. Oral nitrate supplementation to enhance pulmonary rehabilitation in COPD: ON-EPIC a multicentre, double-blind, placebo-controlled, randomised parallel group study. Thorax 2020; 75:547-555. [PMID: 32376732 DOI: 10.1136/thoraxjnl-2019-214278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Dietary nitrate supplementation has been proposed as a strategy to improve exercise performance, both in healthy individuals and in people with COPD. We aimed to assess whether it could enhance the effect of pulmonary rehabilitation (PR) in COPD. METHODS This double-blind, placebo-controlled, parallel group, randomised controlled study performed at four UK centres, enrolled adults with Global Initiative for Chronic Obstructive Lung Disease grade II-IV COPD and Medical Research Council dyspnoea score 3-5 or functional limitation to undertake a twice weekly 8-week PR programme. They were randomly assigned (1:1) to either 140 mL of nitrate-rich beetroot juice (BRJ) (12.9 mmol nitrate), or placebo nitrate-deplete BRJ, consumed 3 hours prior to undertaking each PR session. Allocation used computer-generated block randomisation. MEASUREMENTS The primary outcome was change in incremental shuttle walk test (ISWT) distance. Secondary outcomes included quality of life, physical activity level, endothelial function via flow-mediated dilatation, fat-free mass index and blood pressure parameters. RESULTS 165 participants were recruited, 78 randomised to nitrate-rich BRJ and 87 randomised to placebo. Exercise capacity increased more with active treatment (n=57) than placebo (n=65); median (IQR) change in ISWT distance +60 m (10, 85) vs +30 m (0, 70), estimated treatment effect 30 m (95% CI 10 to 40); p=0.027. Active treatment also impacted on systolic blood pressure: treatment group -5.0 mm Hg (-5.0, -3.0) versus control +6.0 mm Hg (-1.0, 15.5), estimated treatment effect -7 mm Hg (95% CI 7 to -20) (p<0.0005). No significant serious adverse events or side effects were reported. CONCLUSIONS Dietary nitrate supplementation appears to be a well-tolerated and effective strategy to augment the benefits of PR in COPD. TRIAL REGISTRATION NUMBER ISRCTN27860457.
Collapse
Affiliation(s)
- Matthew J Pavitt
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Rebecca Jayne Tanner
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Adam Lewis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Sara Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Bhavin Mehta
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Helen Jefford
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Katrina J Curtis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Syed Husain
- Respiratory Medicine, Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, UK
| | - Karnan Satkunam
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Dinesh Shrikrishna
- Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, Somerset, UK
| | - William Man
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|
15
|
Scherr A, Schumann DM, Karakioulaki M, Franchetti L, Strobel W, Zellweger M, Tamm M, Stolz D. Endothelial dysfunction is not a predictor of outcome in chronic obstructive pulmonary disease. Respir Res 2020; 21:90. [PMID: 32312273 PMCID: PMC7168975 DOI: 10.1186/s12931-020-01345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Local airway inflammation may cause systemic changes which result in endothelial dysfunction. Only a few studies have used reactive hyperemia peripheral arterial tonometry (RH-PAT) in patients with chronic obstructive pulmonary disease (COPD) in order to measure their endothelial dysfunction. Objective To determine the efficacy of endothelial dysfunction, measured by RH-PAT, in assessing disease severity and systemic burden in a cohort of COPD patients. Methods In this prospective, monocentric study, 157 patients with moderate to very severe COPD (GOLD class II-IV) were examined for endothelial dysfunction using RH-PAT (Itamar medical Ltd., Caesarea, Israel). In a nested-cohort, examination was repeated at exacerbation. The association between reactive hyperemia index (RHI), augmentation index (AI) and disease severity and outcome parameters was analysed. Results 57% of the COPD patients had a dysfunctional endothelium and the median (IQR) RHI was 1.42 (1.27–1.53). Exacerbation of COPD was not associated with a significant change in RHI (p = 0.625) or ΑΙ (p = 0.530). None of the diagnostic or clinical outcomes of COPD was associated with RHI or arterial stiffness. Conclusion Endothelial dysfunction is common in COPD. However, it does not seem to be a predictor neither of disease severity, nor of outcome and does not change during exacerbations of the disease.
Collapse
Affiliation(s)
- Andreas Scherr
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Desiree M Schumann
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Meropi Karakioulaki
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Léo Franchetti
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Werner Strobel
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Zellweger
- Clinic of Cardiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
16
|
Vaes AW, Spruit MA, Van Keer K, Barbosa-Breda J, Wouters EFM, Franssen FME, Theunis J, De Boever P. Structural analysis of retinal blood vessels in patients with COPD during a pulmonary rehabilitation program. Sci Rep 2020; 10:31. [PMID: 31913345 PMCID: PMC6949286 DOI: 10.1038/s41598-019-56997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are frequently present in chronic obstructive pulmonary disease (COPD). Population-based studies found associations between retinal vessel diameters and cardiovascular health, but it is unknown whether this also applies to COPD patients. Therefore, we measured retinal vessel diameters in COPD patients and aimed to determine the association with cardiovascular risk factors, lung function, and functional outcomes. In addition, we investigated whether an exercise-based pulmonary rehabilitation (PR) program would change retinal vessel diameters, as a proxy for improved microvascular health. Demographics and clinical characteristics, including pulmonary function, exercise capacity, blood pressure, blood measurements and level of systemic inflammation were obtained from 246 patients during routine assessment before and after PR. Retinal vessel diameters were measured from digital retinal images. Older age and higher systolic blood pressure were associated with narrower retinal arterioles (β: -0.224; p = 0.042 and β: -0.136; p < 0.001, respectively). Older age, higher systolic blood pressure and lower level of systemic inflammation were associated with narrower retinal venules (β: -0.654; -0.229; and -13.767, respectively; p < 0.05). No associations were found between retinal vessel diameters and lung function parameters or functional outcomes. After PR, no significant changes in retinal venular or arteriolar diameter were found. To conclude, retinal vessel diameters of COPD patients were significantly associated with systolic blood pressure and systemic inflammation, whilst there was no evidence for an association with lung function parameters, functional outcomes or other cardiovascular risk factors. Furthermore, an exercise-based PR program did not affect retinal vessel diameter.
Collapse
Affiliation(s)
- Anouk W Vaes
- Research and Education, Ciro, Horn, Netherlands.
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - Martijn A Spruit
- Research and Education, Ciro, Horn, Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karel Van Keer
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - João Barbosa-Breda
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Ophthalmology Department, Centro Hospitalar Sao Joao, Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Emiel F M Wouters
- Research and Education, Ciro, Horn, Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Frits M E Franssen
- Research and Education, Ciro, Horn, Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jan Theunis
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Patrick De Boever
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|