1
|
Zhang Q, Li G, Zhao G, Yan C, Lv H, Fu Y, Li Y, Zhao Z. Preparation and evaluation of inhalable S-allylmercapto-N-acetylcysteine and nintedanib co-loaded liposomes for pulmonary fibrosis. Eur J Pharm Sci 2024; 197:106779. [PMID: 38670294 DOI: 10.1016/j.ejps.2024.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 μm (1.79 μm±0.06 μm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-β1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, China.
| |
Collapse
|
2
|
Guo M, Peng T, Wu C, Pan X, Huang Z. Engineering Ferroptosis Inhibitors as Inhalable Nanomedicines for the Highly Efficient Treatment of Idiopathic Pulmonary Fibrosis. Bioengineering (Basel) 2023; 10:727. [PMID: 37370658 DOI: 10.3390/bioengineering10060727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) refers to chronic progressive fibrotic interstitial pneumonia. It is called a "tumor-like disease" and cannot be cured using existing clinical drugs. Therefore, new treatment options are urgently needed. Studies have proven that ferroptosis is closely related to the development of IPF, and ferroptosis inhibitors can slow down the occurrence of IPF by chelating iron or reducing lipid peroxidation. For example, the ferroptosis inhibitor deferoxamine (DFO) was used to treat a mouse model of pulmonary fibrosis, and DFO successfully reversed the IPF phenotype and increased the survival rate of mice from 50% to 90%. Given this, we perceive that the treatment of IPF by delivering ferroptosis inhibitors is a promising option. However, the delivery of ferroptosis inhibitors faces two bottlenecks: low solubility and targeting. For one thing, we consider preparing ferroptosis inhibitors into nanomedicines to improve solubility. For another thing, we propose to deliver nanomedicines through pulmonary drug-delivery system (PDDS) to improve targeting. Compared with oral or injection administration, PDDS can achieve better delivery and accumulation in the lung, while reducing the systemic exposure of the drug, and is an efficient and safe drug-delivery method. In this paper, three possible nanomedicines for PDDS and the preparation methods thereof are proposed to deliver ferroptosis inhibitors for the treatment of IPF. Proper administration devices and challenges in future applications are also discussed. In general, this perspective proposes a promising strategy for the treatment of IPF based on inhalable nanomedicines carrying ferroptosis inhibitors, which can inspire new ideas in the field of drug development and therapy of IPF.
Collapse
Affiliation(s)
- Mengqin Guo
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
3
|
Chen S, Wei Y, Li S, Miao Y, Gu J, Cui Y, Liu Z, Liang J, Wei L, Li X, Zhou H, Yang C. Zanubrutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway. Int Immunopharmacol 2022; 113:109316. [DOI: 10.1016/j.intimp.2022.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
4
|
Trotsyuk AA, Chen K, Hyung S, Ma KC, Henn D, Mermin-Bunnell AM, Mittal S, Padmanabhan J, Larson MR, Steele SR, Sivaraj D, Bonham CA, Noishiki C, Rodrigues M, Jiang Y, Jing S, Niu S, Chattopadhyay A, Perrault DP, Leeolou MC, Fischer KS, Gurusankar G, Choi Kussie H, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:511-523. [PMID: 34544267 DOI: 10.1089/wound.2021.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that affects 63 in every 100,000 Americans. Its etiology remains unknown, although inflammatory pathways appear to be important. Given the dynamic environment of the lung, we examined the significance of mechanotransduction on both inflammatory and fibrotic signaling during IPF. Innovation: Mechanotransduction pathways have not been thoroughly examined in the context of lung disease, and pharmacologic approaches for IPF do not currently target these pathways. The interplay between mechanical strain and inflammation in pulmonary fibrosis remains incompletely understood. Approach: In this study, we used conditional KO mice to block mechanotransduction by knocking out Focal Adhesion Kinase (FAK) expression in fibroblasts, followed by induction of pulmonary fibrosis using bleomycin. We examined both normal human and human IPF fibroblasts and used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western Blot to evaluate the effects of FAK inhibitor (FAK-I) on modulating fibrotic and inflammatory genes. Results: Our data indicate that the deletion of FAK in mice reduces expression of fibrotic and inflammatory genes in lungs. Similarly, mechanical straining in normal human lung fibroblasts activates inflammatory and fibrotic pathways. The FAK inhibition decreases these signals but has a less effect on IPF fibroblasts as compared with normal human fibroblasts. Conclusion: Administering FAK-I at early stages of fibrosis may attenuate the FAK-mediated fibrotic response pathway in IPF, potentially mediating disease progression.
Collapse
Affiliation(s)
- Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Hyung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kun Cathy Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alana M Mermin-Bunnell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Smiti Mittal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Madelyn R Larson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sydney R Steele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Serena Jing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Arhana Chattopadhyay
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hudson Choi Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Li X, Liang Q, Gao S, Jiang Q, Zhang F, Zhang R, Ruan H, Li S, Luan J, Deng R, Zhou H, Huang H, Yang C. Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-κB signaling pathway. Int Immunopharmacol 2021; 103:108470. [PMID: 34952465 DOI: 10.1016/j.intimp.2021.108470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pathological consequence of interstitial pulmonary diseases, and is characterized by the persistence of fibroblasts and excessive deposition of extracellular matrix (ECM). The etiology of IPF is multifactorial. Although the role of inflammation in fibrogenesis is controversial, it is still recognized as an important component and epiphenomenon of IPF. Stimulus increase production of pro-inflammatory cytokines and activation of NF-κB, which will further promote inflammation response and myofibroblast transition. Lenalidomide is an immunomodulatory drug. Previous studies have revealed its anti-tumor effects through regulating immune response. Here we investigate the effect of lenalidomide on post-inflammation fibrosis. In vitro study revealed that lenalidomide inhibited NF-κB signaling in LPS-induced macrophage, and further attenuated macrophage-induced myofibroblast activation. Meanwhile, lenalidomide could inhibit TGF-β1-induced myofibroblast activation through suppressing TGF-β1 downstream MAPK signaling. In vivo study showed that lenalidomide inhibited pro-inflammatory cytokines TNF-α and IL-6 while enhanced anti-fibrotic cytokines IFN-γ and IL-10 in bleomycin-induced inflammation model, and attenuated pulmonary fibrosis and collagen deposition in the following fibrosis stage. In conclusion, our results demonstrate that lenalidomide possesses potential anti-fibrotic effects through suppressing NF-κB signaling.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China.
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| |
Collapse
|
6
|
Nathan SD, Tapson VF, Elwing J, Rischard F, Mehta J, Shapiro S, Shen E, Deng C, Smith P, Waxman A. Efficacy of Inhaled Treprostinil on Multiple Disease Progression Events in Patients with Pulmonary Hypertension Due to Parenchymal Lung Disease in the INCREASE Trial. Am J Respir Crit Care Med 2021; 205:198-207. [PMID: 34767495 PMCID: PMC8787243 DOI: 10.1164/rccm.202107-1766oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rationale The INCREASE study of inhaled treprostinil met its primary endpoint of change in 6-minute-walk distance at Week 16. In addition, there were significantly fewer clinical worsening events in patients receiving inhaled treprostinil. However, the incidence of multiple events in the same patient is unknown. Objectives This post hoc analysis evaluated the effect of continued treatment with inhaled treprostinil on the frequency and impact of multiple disease progression events. Methods Patients enrolled in INCREASE were analyzed for disease progression events, defined as at least 15% decline in 6-minute-walk distance, exacerbation of underlying lung disease, cardiopulmonary hospitalization, lung transplantation, at least 10% decline in forced vital capacity, or death during the duration of the 16-week study. Measurements and Main Results In total, 147 disease progression events occurred in the inhaled treprostinil group (89/163 patients, 55%) compared with 215 events (109/163 patients, 67%) in the placebo group (P = 0.018). There was a lower incidence of each disease progression component in the inhaled treprostinil group: 6-minute-walk distance decline (45 vs. 64 events), lung disease exacerbation (48 vs. 72 events), FVC decline (19 vs. 33), cardiopulmonary hospitalization (23 vs. 33 events), and death (10 vs. 12). Fewer patients receiving inhaled treprostinil had multiple progression events compared with those receiving the placebo (35 vs. 58, 22% vs. 36%; P = 0.005). Conclusions Patients who received inhaled treprostinil were significantly less likely to experience further disease progression events after an initial event compared with patients receiving placebo. These results support the continuation of inhaled treprostinil despite the occurrence of disease progression in clinical practice.
Collapse
Affiliation(s)
- Steven D Nathan
- Inova Fairfax Hospital, 23146, Advanced Lung Disease and Transplant Program, Falls Church, Virginia, United States;
| | - Victor F Tapson
- Cedars Sinai Medical Center, Medicine - Pulmonary, Beverely Hills, California, United States
| | - Jean Elwing
- University of Cincinnati, 2514, Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, Ohio, United States
| | - Franz Rischard
- University of Arizona, Division of Pulmonary and Critical Care Medicine, Tuscon, Arizona, United States
| | - Jinesh Mehta
- Cleveland Clinic Florida, Department of Pulmonary & Critical Care Medicine, Weston, Florida, United States
| | - Shelley Shapiro
- UCLA Medical Center, 21767, Los Angeles, California, United States
| | - Eric Shen
- United Therapeutics Corp, 17909, Silver Spring, Maryland, United States
| | - Chunqin Deng
- United Therapeutics Corp, 17909, Silver Spring, Maryland, United States
| | - Peter Smith
- United Therapeutics Corp, 17909, Silver Spring, Maryland, United States
| | - Aaron Waxman
- Brigham and Women's Hospital, 1861, Pulmonary and Critical Care, Boston, Massachusetts, United States
| |
Collapse
|
7
|
He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, Cai F, Tang Y. Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:810-820. [PMID: 32638014 DOI: 10.1093/abbs/gmaa067] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid derived from the root of liquorice, has been reported to possess anti-inflammatory and antioxidant activities. Previous studies have found that ISL plays a crucial role in anti-fibrosis of adipose tissue and renal tissue; however, its effect on pulmonary fibrogenesis has not been demonstrated. In this study, we aimed to explore the roles and the underlying mechanisms of ISL in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell proliferation and migration were determined by MTT and wound healing assay, respectively. The expression levels of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (COLIA1) and fibronectin (FN), microtubule-associated protein light chain 3 (LC3) and related signaling molecules were detected by quantitative real-time PCR, western blot and immunofluorescence assay, correspondingly. EGFP-LC3 transfection was used for autophagy analysis. The results showed that ISL inhibited the TGF-β1-induced proliferation and migration, and down-regulated the expressions of α-SMA, COLIA1 and FN. ISL treatment led to up-regulation of LC3 in TGF-β1-treated MRC-5 cells, accompanied by significant decrease in the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In addition, the inhibitory effects of ISL on TGF-β1-induced fibrogenic features in MRC-5 cells were enhanced by pretreatment with autophagy activator Rapmycin and PI3K/AKT inhibitor LY294002 and reversed by autophagy inhibitor 3-methyladenine and PI3K/AKT activator IGF-1. Taken together, our results demonstrated that ISL could attenuate the fibrogenesis of TGF-β1-treated MRC-5 cells by activating autophagy via suppressing the PI3K/AKT/mTOR pathway. Therefore, ISL holds a great potential to be developed as a novel therapeutic agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xueqin Cheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Leyong Yuan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Fenglin Cai
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
8
|
de Brito AA, da Silveira EC, Rigonato-Oliveira NC, Soares SS, Brandao-Rangel MAR, Soares CR, Santos TG, Alves CE, Herculano KZ, Vieira RP, Lino-Dos-Santos-Franco A, Albertini R, Aimbire F, de Oliveira AP. Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111731. [PMID: 31935633 DOI: 10.1016/j.jphotobiol.2019.111731] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic inflammatory disease with a poor prognosis and very few available treatment options. Low-level laser therapy (LLLT) has been gaining prominence as a new and effective anti-inflammatory and immunomodulatory agent. Can lung inflammation and the airway remodeling be regulated by LLLT in an experimental model of IPF in C57Bl/6 mice? The present study investigated if laser attenuates cellular migration to the lungs, the airway remodeling as well as pro-fibrotic cytokines secretion from type II pneumocytes and fibroblasts. Mice were irradiated (780 nm and 30 mW) and then euthanized fifteen days after bleomycin-induced lung fibrosis. Lung inflammation and airway remodeling were evaluated through leukocyte counting in bronchoalveolar lavage fluid (BALF) and analysis of collagen in lung, respectively. Inflammatory cells in blood were also measured. For in vitro assays, bleomycin-activated fibroblasts and type II pneumocytes were irradiated with laser. The pro- and anti-inflammatory cytokines level in BALF as well as cells supernatant were measured by ELISA, and the TGFβ in lung was evaluated by flow cytometry. Lung histology was used to analyze collagen fibers around the airways. LLLT reduced both migration of inflammatory cells and deposition of collagen fibers in the lungs. In addition, LLLT downregulated pro-inflammatory cytokines and upregulated the IL-10 secretion from fibroblasts and pneumocytes. Laser therapy greatly reduced total lung TGFβ. Systemically, LLLT also reduced the inflammatory cells counted in blood. There is no statistical difference in inflammatory parameters studied between mice of the basal group and the laser-treated mice. Data obtained indicate that laser effectively attenuates the lung inflammation, and the airway remodeling in experimental pulmonary fibrosis is driven to restore the balance between the pro- and anti-inflammatory cytokines in lung and inhibit the pro-fibrotic cytokines secretion from fibroblasts.
Collapse
Affiliation(s)
- Auriléia Aparecida de Brito
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Elaine Cristina da Silveira
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | | | - Stephanie Souza Soares
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Maysa Alves Rodrigues Brandao-Rangel
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Post Graduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Clariana Rodrigues Soares
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Tawany Gonçalves Santos
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Cintia Estefano Alves
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Karine Zanella Herculano
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Rodolfo Paula Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Post Graduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil; Post-Graduation Program in Sciences of Human Moviment and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Regiane Albertini
- Post-Graduation Program in Sciences of Human Moviment and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil; Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Flavio Aimbire
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil.
| | - Ana Paula de Oliveira
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Furini F, Carnevale A, Casoni GL, Guerrini G, Cavagna L, Govoni M, Sciré CA. The Role of the Multidisciplinary Evaluation of Interstitial Lung Diseases: Systematic Literature Review of the Current Evidence and Future Perspectives. Front Med (Lausanne) 2019; 6:246. [PMID: 31750308 PMCID: PMC6842981 DOI: 10.3389/fmed.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
The opportunity of a multidisciplinary evaluation for the diagnosis of interstitial pneumonias highlighted a major change in the diagnostic approach to diffuse lung disease. The new American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society guidelines for the diagnosis of idiopathic pulmonary fibrosis have reinforced this assumption and have underlined that the exclusion of connective tissue disease related lung involvement is mandatory, with obvious clinical and therapeutic impact. The multidisciplinary team discussion consists in a moment of interaction among the radiologist, pathologist and pulmonologist, also including the rheumatologist when considered necessary, to improve diagnostic agreement and optimize the definition of those cases in which pulmonary involvement may represent the first or prominent manifestation of an autoimmune systemic disease. Moreover, the proposal of classification criteria for interstitial lung disease with autoimmune features (IPAF) represents an effort to define lung involvement in clinically undefined autoimmune conditions. The complexity of autoimmune diseases, and in particular the lack of classification criteria defined for pathologies such as anti-synthetase syndrome, makes the involvement of the rheumatologist essential for the correct interpretation of the autoimmune element and for the application of classification criteria, that could replace clinical pictures initially interpreted as IPAF in defined autoimmune disease, minimizing the risk of misdiagnosis. The aim of this review was to evaluate the available evidence about the efficiency and efficacy of different multidisciplinary team approaches, in order to standardize the professional figures and the core set procedures that should be necessary for a correct approach in diagnosing patients with interstitial lung disease.
Collapse
Affiliation(s)
- Federica Furini
- Section of Rheumatology, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna di Ferrara, Cona, Italy
| | - Aldo Carnevale
- Department of Radiology, Azienda Ospedaliero-Universitaria Sant'Anna di Ferrara, Cona, Italy
| | - Gian Luca Casoni
- Department of Medical Sciences, Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Giulio Guerrini
- Section of Rheumatology, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna di Ferrara, Cona, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Marcello Govoni
- Section of Rheumatology, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna di Ferrara, Cona, Italy
| | - Carlo Alberto Sciré
- Section of Rheumatology, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna di Ferrara, Cona, Italy
| |
Collapse
|