1
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Scher MS. Interdisciplinary fetal-neonatal neurology training applies neural exposome perspectives to neurology principles and practice. Front Neurol 2024; 14:1321674. [PMID: 38288328 PMCID: PMC10824035 DOI: 10.3389/fneur.2023.1321674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.
Collapse
Affiliation(s)
- Mark S. Scher
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Fu T, Yao B, Guo Y, Zhang Y, Huang S, Wang X. Establishment of LC-MS/MS method for quantifying chlorpromazine metabolites with application to its metabolism in liver and placenta microsomes. J Pharm Biomed Anal 2023; 233:115457. [PMID: 37201234 DOI: 10.1016/j.jpba.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Chlorpromazine has sedative and antiemetic pharmacological effects and is widely used in clinic. Its main metabolites include 7-hydroxychlorpromazine, N-monodesmethylchlorpromazine and chlorpromazine sulfoxide, which affect the therapeutic efficacy. To support metabolism research, the quantitative analysis method of 7-hydroxychlorpromazine, N-monodesmethylchlorpromazine and chlorpromazine sulfoxide in microsomal enzymes was established for the first time by LC-MS/MS. This method has been fully validated in rat liver microsomes, and partially verified in human liver microsomes and human placenta microsomes. The intra-day and inter-day accuracy and precision of the analytes were all within ± 15%. The extraction recovery was good, and no matrix effect was detected. This accurate and sensitive method was successfully applied to chlorpromazine metabolism in different microsomal enzymes. In particular, the biotransformation of chlorpromazine in human placenta microsomes was detected for the first time. The metabolites detected in human liver and placenta microsomes presented different formation rates, indicating the wide distribution and different activities of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Tiantian Fu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Enyoh CE, Duru CE, Ovuoraye PE, Wang Q. Evaluation of nanoplastics toxicity to the human placenta in systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130600. [PMID: 36584646 DOI: 10.1016/j.jhazmat.2022.130600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Following the discovery of plastics in the human placenta, this study evaluated the toxicity of ten different nanoplastics (NPs) in the human placenta. Since the placenta performs metabolic and excretion functions by the enzymatic system, the NPs were docked on these human enzymes including soluble epoxide hydrolase, uracil phosphoribosyltransferase, beta 1,3-glucuronyltransferase I, sulfotransferase, N-acetyltransferase 2, and cytochrome P450 1A1at their active sites with toxicity (binding affinity) determined and compared to control compounds. Density functional theory analysis were conducted on the NPs to identify their global reactivity descriptors and Artificial Neural Networks to predict toxicity based on reactivity descriptors. Polycarbonate (PC), polyethylene terephthalate (PET) and polystyrene (PS) showed the highest toxicity to all enzymes and thus the most toxic polymers due to the presence of an electron-withdrawing group in their aromatic rings, which demonstrated an improved recognition of the enzyme active site by pi- and alkyl interactions. A 210-6 fractional factorial design approach was used in conjunction with a fixed effects model to assess the primary and secondary effects of NPs in a composite system on binding affinity to the placental enzymes. The simulation results suggest that NPs mixture may pose significant risks to the placenta through inhibition of its key enzymes.
Collapse
Affiliation(s)
- Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| | - Chidi Edbert Duru
- Department of Chemistry, Faculty of Physical Sciences, Imo State University, PMB2000 Owerri, Nigeria
| | - Prosper E Ovuoraye
- Department of Chemical Engineering, Federal University of Petroleum Resources, PMB 1221 Effurun, Nigeria
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
6
|
Calis P, Vojtech L, Hladik F, Gravett MG. A review of ex vivo placental perfusion models: an underutilized but promising method to study maternal-fetal interactions. J Matern Fetal Neonatal Med 2022; 35:8823-8835. [PMID: 34818981 PMCID: PMC9126998 DOI: 10.1080/14767058.2021.2005565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Studying the placenta can provide information about the mechanistic pathways of pregnancy disease. However, analyzing placental tissues and manipulating placental function in real-time during pregnancy is not feasible. The ex vivo placental perfusion model allows observing important aspects of the physiology and pathology of the placenta, while maintaining its viability and functional integrity, and without causing harm to mother or fetus. In this review, we describe and compare setups for this technically complex model and summarize outcomes from various published studies. We hope that our review will encourage wider use of ex vivo placental perfusion, which in turn would generate more knowledge to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Pinar Calis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Stojanovska V, Arnold S, Bauer M, Voss H, Fest S, Zenclussen AC. Characterization of Three-Dimensional Trophoblast Spheroids: An Alternative Model to Study the Physiological Properties of the Placental Unit. Cells 2022; 11:cells11182884. [PMID: 36139458 PMCID: PMC9497053 DOI: 10.3390/cells11182884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
It was postulated that 3D cell culture models more accurately reflect the complex tissue physiology and morphology in comparison to 2D cell monolayers. Currently, there is a shortage of well-characterized and easily maintainable high-throughput experimental models of the human placenta. Here, we characterized three different 3D cultures (e.g., spheroids) derived from trophoblast cell lines and studied their functionality in comparison to primary fetal trophoblasts and placental tissue. The spheroid growth rates of JEG3, BeWo and HTR8/SVneo cell lines were similar among each other and were significantly larger in comparison to primary trophoblast spheroids. All spheroids exhibited migratory properties and shortest distances were registered for JEG3 spheroids. Even though all spheroids displayed invasive capabilities, only the invasive features of HTR8/SVneo spheroids resulted in specific branching. This was in agreement with the invasive properties of the spheroids obtained from primary trophoblasts. Human chorionic gonadotropin production was highest in JEG3 spheroids and only increased when stimulated with cAMP and forskolin in BeWo, but not HTR8/SVneo spheroids. The gene expression analysis confirmed that 3D trophoblast cell cultures and especially HTR8/SVneo spheroids showed considerable similarities with the gene expression profile of primary placental tissue. This study offers a broad characterization of 3D trophoblast spheroids that, in turn, can help in selecting the best model depending on the scientific question that needs to be answered.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
- Correspondence:
| | - Susanne Arnold
- Department of Environmental Immunology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Hermann Voss
- Department of Obstetrics and Gynecology, Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg, 06847 Dessau-Rosslau, Germany
| | - Stefan Fest
- Department of Environmental Immunology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
- Department of Pediatrics, Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg, 06847 Dessau-Rosslau, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
- Saxonian Incubator for Translational Research, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Blanco-Castañeda R, Zapata-Vázquez Y, Lazalde-Ramos BP, Enríquez-Mendiola D, Lares-Asseff I, Galaviz-Hernández C, Martínez G, Sosa-Macías M. Effect of levetiracetam on the gene expression of placental transporters in a murine model. Epilepsia 2022; 63:1266-1275. [PMID: 35174498 DOI: 10.1111/epi.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Levetiracetam (LEV) is an antiseizure medication prescribed to women during childbearing age. The impact of LEV on placental transporters is poorly understood. This study aimed to assess the effect of LEV exposure on the messenger RNA (mRNA) expression of placental transporters for hormones and nutrients and to correlate their expression with the drug's serum concentration in pregnant mice. METHODS Studies were conducted on gestational days (GD) 13 and 18, following oral treatment with 100 mg/kg LEV or the vehicle every 24 h after weaning. Serum LEV measurements were performed by High-performance liquid chromatography with a UV detector (HPLC-UV). The weight, height, and width of the fetuses were also analyzed. In addition, the placental expression of transporters xCt, Lat1, Oatp4a1, Fr-α, Rfc, and Snat4 was evaluated through semi-quantitative real-time polymerase chain reaction (qPCR). The Kruskal-Wallis and the Mann-Whitney U tests were used to determine the statistical significance (p < .05). The correlation between serum LEV concentration and placental gene expression was evaluated using the Spearman test. RESULTS The weight, height, and width were lower in the fetuses exposed to LEV compared with the control group (p < .05). The number of fetuses was lower in the LEV-exposed group than in the control GD 13 group (p < .001). No significant differences were detected in the mRNA expression level at GD 13. At GD 18, the expression of Lat1, Oatp4a1, xCT, and Snat4 was higher in the group treated with LEV compared with the control group (p < .05), whereas the expression of Rfc was lower (p < .05). No correlation was identified between serum LEV concentrations and gene expression levels. SIGNIFICANCE The repression of the Rfc transcript by LEV at GD 18 suggests that the protein expression would be abolished contributing to the observed intrauterine growth restriction (IUGR). Furthermore, the significant increase in mRNA of xCt, Snat4, Oatp4a1, and Lat1 might be a compensatory mechanism for fetal survival at GD 18.
Collapse
Affiliation(s)
| | - Yessica Zapata-Vázquez
- Laboratory of Biomedical Ethnopharmacology, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Blanca P Lazalde-Ramos
- Laboratory of Biomedical Ethnopharmacology, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | | | - Ismael Lares-Asseff
- Genomics Academy, CIIDIR Durango Unit, National Polytechnic Institute, Durango, Mexico
| | | | - Gerardo Martínez
- Biomedical Research Unit - Mexican Institute of Social Security (IMSS) Durango, Durango, Mexico
| | - Martha Sosa-Macías
- Genomics Academy, CIIDIR Durango Unit, National Polytechnic Institute, Durango, Mexico
| |
Collapse
|
9
|
Ortega MA, Fraile-Martínez O, García-Montero C, Sáez MA, Álvarez-Mon MA, Torres-Carranza D, Álvarez-Mon M, Bujan J, García-Honduvilla N, Bravo C, Guijarro LG, De León-Luis JA. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022; 11:cells11030568. [PMID: 35159377 PMCID: PMC8833914 DOI: 10.3390/cells11030568] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The placenta is a central structure in pregnancy and has pleiotropic functions. This organ grows incredibly rapidly during this period, acting as a mastermind behind different fetal and maternal processes. The relevance of the placenta extends far beyond the pregnancy, being crucial for fetal programming before birth. Having integrative knowledge of this maternofetal structure helps significantly in understanding the development of pregnancy either in a proper or pathophysiological context. Thus, the aim of this review is to summarize the main features of the placenta, with a special focus on its early development, cytoarchitecture, immunology, and functions in non-pathological conditions. In contraposition, the role of the placenta is examined in preeclampsia, a worrisome hypertensive disorder of pregnancy, in order to describe the pathophysiological implications of the placenta in this disease. Likewise, dysfunction of the placenta in fetal growth restriction, a major consequence of preeclampsia, is also discussed, emphasizing the potential clinical strategies derived. Finally, the emerging role of the placenta in maternal chronic venous disease either as a causative agent or as a consequence of the disease is equally treated.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4540; Fax: +34-91-885-4885
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Pathological Anatomy Service, Central University Hospital of Defence-UAH, 28047 Madrid, Spain
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, 28801 Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
10
|
Jones J. Toxicology as a diagnostic tool to identify the misuse of drugs in the perinatal period. Front Pediatr 2022; 10:1071564. [PMID: 36843886 PMCID: PMC9944414 DOI: 10.3389/fped.2022.1071564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/23/2022] [Indexed: 02/11/2023] Open
Abstract
The use, misuse, and abuse of substances are a continued public health concern in this country and around the world. Perinatal exposure to substances of abuse is associated with several long-term negative consequences for the neonate. Limited resources exist to assist perinatal health professionals on this very complex subject. The purpose of this document is to provide additional information about selecting monitoring protocols, the specifics of appropriate testing methodologies, and the interpretation of toxicological findings. Understanding these concepts better allows perinatal healthcare professionals to be a voice for the voiceless in order to protect and enrich lives during this unprecedented opioid epidemic.
Collapse
Affiliation(s)
- Joseph Jones
- United States Drug Testing Laboratories, Des Plaines, IL, United States
| |
Collapse
|
11
|
Yamashita M, Markert UR. Overview of Drug Transporters in Human Placenta. Int J Mol Sci 2021; 22:ijms222313149. [PMID: 34884954 PMCID: PMC8658420 DOI: 10.3390/ijms222313149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
The transport of drugs across the placenta is a point of great importance in pharmacotherapy during pregnancy. However, the knowledge of drug transport in pregnancy is mostly based on experimental clinical data, and the underlying biological mechanisms are not fully understood. In this review, we summarize the current knowledge of drug transporters in the human placenta. We only refer to human data since the placenta demonstrates great diversity among species. In addition, we describe the experimental models that have been used in human placental transport studies and discuss their availability. A better understanding of placental drug transporters will be beneficial for the health of pregnant women who need drug treatment and their fetuses.
Collapse
Affiliation(s)
- Michiko Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka 5650871, Japan
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence:
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| |
Collapse
|
12
|
Reimann B, Vrijens K, Roels HA, Wang C, Cosemans C, Van Overmeire I, Nawrot TS, Plusquin M. In utero exposure to parabens and early childhood BMI z-scores - Associations between placental ethyl paraben, longitudinal BMI trajectories and cord blood metabolic biomarkers. ENVIRONMENT INTERNATIONAL 2021; 157:106845. [PMID: 34474324 PMCID: PMC8484768 DOI: 10.1016/j.envint.2021.106845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Parabens are used as antimicrobial preservatives in personal care products. Few studies have dealt with adverse health outcomes, transplacental transfer, and obesogenic effects of prenatal exposure to parabens. We examined the association between placental paraben levels and cord blood metabolic biomarkers, considering modulating effects of maternal pre-pregnancy BMI and underlying epigenetic mechanisms, and investigated longitudinal effects of in utero paraben exposure on early childhood trajectories of BMI z-scores. METHODS Placental concentrations of four parabens [methyl (MeP), ethyl (EtP), propyl (PrP), and butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 229 placentas of the ENVIRONAGE birth cohort. The association with cord blood metabolic biomarkers [glucose, insulin, γ-glutamyltransferase (GGT), high-density and low-density lipoprotein (HDL and LDL)] was analyzed in multiple regression models with two different sets of, a priori selected potential confounders, additionally stratified for different maternal BMI groups and assessed by causal mediation analysis. The association between placental paraben concentration and differential DNA methylation of CpGs annotated to GGT and longitudinal measurements of BMI z-scores were investigated with adjusted linear mixed models. RESULTS The geometric means of placental MeP, EtP, PrP, and BuP levels above the limit of detection (LOD) were 4.42, 1.32, 1.51, and 0.35 ng/g respectively, with only EtP showing sufficient (88%) measurements above LOD for further analyses. An interquartile ratio (IQR) increase in placental EtP was associated with an increase of 12.61 % (95% CI: 1.80 24.57) in the geometric mean of cord GGT activity, and with a decrease of -3.64 % (95% CI: -6.80 to -0.39) in the geometric mean of cord glucose. Placental EtP levels were significantly associated with hypermethylation of cg08612779 annotated to GGT7 after correcting for multiple testing (ß = 0.0017, p = 0.049). An interquartile ratio (IQR) increment in placental EtP was associated with a decrease in longitudinal BMI z-score of 0.27 points (95% CI: -0.46 to -0.088). CONCLUSION Prenatal EtP exposure may affect early childhood BMI. The association of placental EtP with cord blood GGT and glucose levels provides a starting point for further research on mechanisms of paraben-related metabolic processes in utero.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Ilse Van Overmeire
- Sciensano, Chemical and Physical Health Risks, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
13
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
14
|
Anoshchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, Unadkat JD. Gestational Age-Dependent Abundance of Human Placental Transporters as Determined by Quantitative Targeted Proteomics. Drug Metab Dispos 2020; 48:735-741. [PMID: 32591415 PMCID: PMC7469251 DOI: 10.1124/dmd.120.000067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
Some women take medication during pregnancy to address a variety of clinical conditions. Because of ethical and logistical concerns, it is impossible to determine fetal drug exposure, and therefore fetal risk, during pregnancy. Hence, alternative approaches need to be developed to predict maternal-fetal drug exposure throughout pregnancy. To do so, we previously developed and verified a maternal-fetal physiologically based pharmacokinetic model, which can predict fetal exposure to drugs that passively cross the placenta. However, many drugs are actively transported by the placenta (e.g., human immunodeficiency virus protease inhibitors). To extend our maternal-fetal physiologically based pharmacokinetic model to these actively transported drugs, we determined the gestational age–dependent changes in the protein abundance of placental transporters. Total cellular membrane fractions from first trimester (T1; n = 15), second trimester (T2; n = 19), and term (n = 15) human placentae obtained from uncomplicated pregnancies were isolated by ultracentrifugation. Transporter protein abundance was determined by targeted quantitative proteomics using liquid chromatography tandem mass specrometry. We observed that breast cancer resistance protein and P-glycoprotein abundance significantly decreased from T1 to term by 55% and 69%, respectively (per gram of tissue). Organic anion–transporting polypeptide (OATP) 2B1 abundance significantly decreased from T1 to T2 by 32%. In contrast, organic cation transporter (OCT) 3 and organic anion transporter 4 abundance significantly increased with gestational age (2-fold from T1 to term, 1.6-fold from T2 to term). Serotonin transporter and norepinephrine transporter did not change with gestational age. The abundance of bile salt export pump, multidrug resistance-associated protein 1-5, Na+-taurocholate cotransporting polypeptide, OATP1B1, OATP1B3, OCTN1-2, concentrative nucleoside transporter 1-3, equilibrative nucleoside transporter 2, and multidrug and toxin extrusion 1 could not be quantified. These data can be incorporated into our maternal-fetal physiologically based pharmacokinetic model to predict fetal exposure to drugs that are actively transported across the placenta.
Collapse
Affiliation(s)
- Olena Anoshchenko
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|